String Theory		String Scattering	<u>Problem</u> : Det
C SO D			Not
			1.
adatal	Perturbation		2.
STAN.	theory		3.
		``lpha' o 0``	
10D effective action	n		
$\int (\alpha')^3 R^4 \sqrt{g} \mathbf{d}^{10} x$	Off-shell SUGRA actio		
Compact on CY thre	tification		
4D effective action	1		
$\int \chi(X_3) R \sqrt{g} \mathbf{d}^4 x$	Applications	 Moduli stabilisation Model building Cosmology 	

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Insights from Superstrings, Superfields and Superparticles

etermining the α' expansion in 10-dimensional SUGRA action steworthy open challenges:

- Eight-derivative couplings in the RR-sector
- Role of supersymmetry in string kinematics
- Consistency with string dualities and compactifications

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

String Phenomenology Conference, 8th of July 2022

Saclay

String Scattering	<u>Problem</u> : Def Not 1 2 3
$\mathbf{f}^{\mathbf{i}}\alpha^{\prime}\rightarrow0^{\mathbf{i}\mathbf{i}}$	Motivation:
$\rightarrow \rightarrow \leftarrow$	
Moduli stabilisation	
 Model building Cosmology 	
	 Moduli stabilisation Model building Cosmology

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Insights from Superstrings, Superfields and Superparticles

etermining the α' expansion in 10-dimensional SUGRA action oteworthy open challenges:

- Eight-derivative couplings in the RR-sector
- Role of supersymmetry in string kinematics
- Consistency with string dualities and compactifications
- * Improved understanding of α' and g_s corrections
- * Understanding SUSY properties of higher-derivative terms in SUGRA
- Applications to string dualities and AdS/CFT
- Insights into flux compactifications and string vacua beyond leading order

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

String Phenomenology Conference, 8th of July 2022

Saclay

String Theory Perturbation theory	String Scattering	Problem: Det Not 1. 2.
10D effective action	$\bullet ``\alpha' \to 0``$	3. <u>Motivation:</u> *
$\int (\alpha')^3 R^4 \sqrt{g} \mathbf{d}^{10} x \qquad \bullet \qquad$		+ + +
Compactification on CY threefold X_3		<u>Strategies:</u>
4D effective action $\int \chi(X_3) R \sqrt{g} d^4 x$ Applications	 Moduli stabilisation Model building Cosmology 	

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Insights from Superstrings, Superfields and Superparticles

termining the α' expansion in 10-dimensional SUGRA action teworthy open challenges:

- Eight-derivative couplings in the RR-sector
- Role of supersymmetry in string kinematics
- Consistency with string dualities and compactifications
- * Improved understanding of α' and g_s corrections
- * Understanding SUSY properties of higher-derivative terms in SUGRA
- Applications to string dualities and AdS/CFT
- * Insights into flux compactifications and string vacua beyond leading order

Superstrings

Tree and 1-loop string amplitudes up to six-points

10D Superfield

String kinematics from compact superspace integrals

11D Superparticles

M-theory duality and derivation of $SL(2,\mathbb{Z})$ modular functions

Based on <u>ArXiv: 2205.11530</u> together with

James Liu U. of Michigan

String Phenomenology Conference, 8th of July 2022

String Theory Image: Open string theory Image: Open string theory Image: Open string theory	String Scattering	Problem: Dete Not 1. 2. 3.
10D effective action	$\mathbf{a}' \to 0^{\mathbf{a}}$	Motivation: *
$\int (\alpha')^3 R^4 \sqrt{g} \mathbf{d}^{10} x$ Off-shell SUGRA action		* * *
Compactification on CY threefold X_3		<u>Strategies:</u>
4D effective action $\int \chi(X_3) R \sqrt{g} d^4 x$ Applications	 Moduli stabilisation Model building Cosmology 	

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Outline for this talk

- 1. Review of eight-derivative actions
- 2. Five-point kinematics for 3-forms
- 3. Structure of higher-point kinematics
- 4. Tests with lower dimensional SUSY

Name: Andreas Schachner

Email: as2673@cam.ac.uk

Key words: Scattering Amplitudes, Supergravity, String Effective Actions

Insights from Superstrings, Superfields and Superparticles

termining the α' expansion in 10-dimensional SUGRA action teworthy open challenges:

- Eight-derivative couplings in the RR-sector
- Role of supersymmetry in string kinematics
- Consistency with string dualities and compactifications
- Improved understanding of α' and g_s corrections
- Understanding SUSY properties of higher-derivative terms in SUGRA
- Applications to string dualities and AdS/CFT
- Insights into flux compactifications and string vacua beyond leading order

Superstrings

Tree and 1-loop string amplitudes up to six-points

10D Superfield

String kinematics from compact superspace integrals

11D Superparticles

M-theory duality and derivation of $SL(2,\mathbb{Z})$ modular functions

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

Ruben Minasian Saclay

String Phenomenology Conference, 8th of July 2022

Type IIB Supergravity and its α' **Expansion**

The α' expansion of Type IIB $\mathcal{N} = (2,0)$ SUGRA in 10D reads schematically (g_s expansion suppressed)

$$S_{IIB} = S_{IIB}^{tree} + (\alpha')^3 S_{IIB}^{(3)} + \sum_{n=4}^{\infty} (\alpha')^n S_{IIB}^{(n)}$$

No $(\alpha')^1$ or $(\alpha')^2$ to any order in g_s due to $\mathcal{N} = 2$ SUSY in 10D

Type IIB Supergravity and its α' Expansion

The α' expansion of Type IIB $\mathcal{N} = (2,0)$ SUGRA in 10D reads schematically (g_s expansion suppressed)

$$S_{IIB} = S_{IIB}^{tree} + (\alpha')^3 S_{IIB}^{(3)} + \sum_{n=4}^{\infty} (\alpha')^n S_{IIB}^{(n)}$$

This talk: bulk corrections $S_{IIR}^{(3)}$ at order $(\alpha')^3$ corresponding to 8-derivative operators

$$S_{IIB}^{(3)} \sim \int \left\{ R^4 + R^3 (G_3^2 + |G_3|^2 + \overline{G}_3^2 + F_5^2 + (\mathcal{P})^2 + \nabla \mathcal{P} + \dots) + R^2 \right\}$$

in terms of the fields

$$\tau = C_0 + ie^{-\phi}$$
, $\mathscr{P}_m = \frac{i}{2\text{Im}(\tau)} \nabla_m \tau$, $G_3 = \frac{1}{\text{Im}(\tau)^{1/2}} (F_3 - C_3)$

Action is invariant under $SL(2,\mathbb{Z})$ transformations

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad , \qquad \mathcal{P} \to \frac{c\overline{\tau} + d}{c\tau + d} \mathcal{P} \quad , \qquad G_3 \to \left(\frac{c\overline{\tau} + d}{c\tau + d}\right)^{1/2} G_3$$

and a local U(1) symmetry with U(1) charge assignments

 $Q_{U(1)}(\mathcal{P}) = 2$, $Q_{U(1)}(G_3) = 1$, $Q_{U(1)}(g_{MN}) = Q_{U(1)}(F_5) = 0$

No $(\alpha')^1$ or $(\alpha')^2$ to any order in g_s due to $\mathcal{N} = 2$ SUSY in 10D

 $\left\{ \left(\left| \nabla G_3 \right|^2 + \left(\nabla F_5 \right)^2 + G_3^4 + \ldots \right) + R(G_3^6 + \ldots) + G_3^8 + \left(\nabla G_3 \right)^4 + \ldots \right\}$

 τH_3)

Type IIB Supergravity and its α' Expansion

The α' expansion of Type IIB $\mathcal{N} = (2,0)$ SUGRA in 10D reads schematically (g_s expansion suppressed)

$$S_{IIB} = S_{IIB}^{tree} + (\alpha')^3 S_{IIB}^{(3)} + \sum_{n=4}^{\infty} (\alpha')^n S_{IIB}^{(n)}$$

This talk: bulk corrections $S_{IIR}^{(3)}$ at order $(\alpha')^3$ corresponding to 8-derivative operators

$$S_{IIB}^{(3)} \sim \int \left\{ R^4 + R^3 (G_3^2 + |G_3|^2 + \overline{G}_3^2 + F_5^2 + (\mathscr{P})^2 + \nabla \mathscr{P} + \dots) + R^2 (|\nabla G_3|^2 + (\nabla F_5)^2 + G_3^4 + \dots) + R(G_3^6 + \dots) + G_3^8 + (\nabla G_3)^4 + \dots \right\}$$

in terms of the fields

$$\tau = C_0 + ie^{-\phi}$$
, $\mathscr{P}_m = \frac{i}{2\text{Im}(\tau)} \nabla_m \tau$, $G_3 = \frac{1}{\text{Im}(\tau)^{1/2}} (F_3 - C_3)$

Action is invariant under $SL(2,\mathbb{Z})$ transformations

$$\tau \to \frac{a\tau + b}{c\tau + d}$$
, $\mathscr{P} \to \frac{c\overline{\tau} + d}{c\tau + d}\mathscr{P}$, $G_3 \to \left(\frac{c\overline{\tau} + d}{c\tau + d}\right)^{1/2}G_3$

and a local U(1) symmetry with U(1) charge assignments

 $Q_{U(1)}(\mathcal{P}) = 2$, $Q_{U(1)}(G_3) = 1$, $Q_{U(1)}(g_{MN}) = Q_{U(1)}(F_5) = 0$

No $(\alpha')^1$ or $(\alpha')^2$ to any order in g_s due to $\mathcal{N} = 2$ SUSY in 10D

The full quartic action

Quartic action completely determined [Policastro 0812.3138, Liu 1912.10974]

$$\mathcal{L}^{(3)} \supset f_0(\tau, \bar{\tau}) \left(t_8 t_8 + \frac{1}{8} \epsilon_{10} \epsilon_{10} \right) \left\{ R^4 + 6R^2 (|\nabla \mathcal{P}|^2 + |\nabla G_3|^2) + . \right.$$

in terms of the **Eisenstein series of weight 3/2** [Green hep-th/9706175]

The kinematics is (mostly) fixed by the notion of **index structures** t_8 and ϵ_{10} as well as related to 12D covariance [Minasian 1506.06756]

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a non-vanishing total U(1) charge

 $G_3^2 R^3$, $(\nabla \mathscr{P})\overline{\mathscr{P}}^2 R^2$, $G_3^2 |\nabla G_3|^2 R$, $G_3^4 R^2$, ...

- [1]: Richards 0807.2421
- [2]: Richards 0807.3453
- [3]: Liu, Minasian 1304.3137
- [4]: Liu, Minasian 1912.10974
- [5]: Green et al. hep-th/9808061
- [6]: Green et al. 1904.13394
- [7]: Green et al. hep-th/9710151
- [8]: Boels 1204.4208
- [9]: Caron-Huot et al. 1010.5487

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a non-vanishing total U(1) charge

$$G_3^2 R^3$$
, $(\nabla \mathscr{P})\overline{\mathscr{P}}^2 R^2$, $G_3^2 |\nabla G_3|^2 R$, $G_3^4 R^2$, ...

Their coefficients are determined by supersymmetry [5] and given by $SL(2,\mathbb{Z})$ -covariant modular forms (see e.g. [6])

$$f_{w}(\tau,\bar{\tau}) = \sum_{(\hat{l}_{1},\hat{l}_{2})\neq(0,0)} \frac{\operatorname{Im}(\tau)^{\frac{3}{2}}}{(\hat{l}_{1}+\tau\hat{l}_{2})^{\frac{3}{2}+w}(\hat{l}_{1}+\bar{\tau}\hat{l}_{2})^{\frac{3}{2}-w}} \quad , \qquad f_{w}\left(\frac{a\tau+b}{c\tau+d},\frac{a\bar{\tau}+b}{c\bar{\tau}+d}\right) = \left(\frac{c\tau+d}{c\bar{\tau}+d}\right)^{w} f_{w}(\tau,\bar{\tau}) \quad , \quad Q_{U(1)}(f_{w}) = -2w \quad , \quad \bar{f}_{w} = f_{-w}$$

so that schematically

$$\mathscr{L}^{(3)} = f_{12}\Lambda^{16} + \dots + f_4 G_3^8 + \dots + f_1 G_3^2 R^3 + f_0 (R^4 + |G_3|^2 R^3 + \dots) + f_{-1} \overline{G}_3^2 R^3 + \dots + f_{-12} (\Lambda^*)^{16}$$

The terms Λ^{16} of maximal U(1)-charge involving the dilatino Λ where explicitly derived in [7].

The kinematics for $P \ge 5$ amplitudes in the effective action remains largely unfixed.

References

[1]: Richards 0807.2421

[2]: Richards 0807.3453

[3]: Liu, Minasian 1304.3137

[4]: Liu, Minasian 1912.10974

[5]: Green et al. hep-th/9808061

[6]: Green et al. 1904.13394

[7]: Green et al. hep-th/9710151

[8]: Boels 1204.4208

[9]: Caron-Huot et al. 1010.5487

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a **non-vanishing** total U(1) charge

$$G_3^2 R^3$$
, $(\nabla \mathscr{P})\overline{\mathscr{P}}^2 R^2$, $G_3^2 |\nabla G_3|^2 R$, $G_3^4 R^2$, ...

Their coefficients are determined by supersymmetry [5] and given by $SL(2,\mathbb{Z})$ -covariant modular forms (see e.g. [6])

$$f_{w}(\tau,\bar{\tau}) = \sum_{(\hat{l}_{1},\hat{l}_{2})\neq(0,0)} \frac{\operatorname{Im}(\tau)^{\frac{3}{2}}}{(\hat{l}_{1}+\tau\hat{l}_{2})^{\frac{3}{2}+w}(\hat{l}_{1}+\bar{\tau}\hat{l}_{2})^{\frac{3}{2}-w}} \quad , \qquad f_{w}\left(\frac{a\tau+b}{c\tau+d},\frac{a\bar{\tau}+b}{c\bar{\tau}+d}\right) = \left(\frac{c\tau+d}{c\bar{\tau}+d}\right)^{w} f_{w}(\tau,\bar{\tau}) \quad , \quad Q_{U(1)}(f_{w}) = -2w \quad , \quad \bar{f}_{w} = f_{-w}$$

so that schematically

$$\mathscr{L}^{(3)} = f_{12}\Lambda^{16} + \dots + f_4 G_3^8 + \dots + f_1 G_3^2 R^3 + f_0 (R^4 + |G_3|^2 R^3 + \dots) + f_{-1} \overline{G}_3^2 R^3 + \dots + f_{-12} (\Lambda^*)^{16}$$

The terms Λ^{16} of maximal U(1)-charge involving the dilatino Λ where explicitly derived in [7].

The role of U(1) violation

Contact terms in $\mathscr{L}^{(3)}$ are best organised by their U(1) charges.

P-point amplitudes carry a maximal U(1) charge [8,6] (derived from 10D superamplitudes [9])

$$|Q_{U(1)}| \le 2(P-4)$$

Amplitudes saturating this bound, are called maximally U(1)-violating (MUV) [8,6] and have special properties:

- free of massless poles ("what you see is what you get"),
- uniquely fixed by supersymmetry,
- kinematically determined by a linearised superfield.

The kinematics for $P \ge 5$ amplitudes in the effective action remains largely unfixed.

References

[1]: Richards 0807.2421

- [2]: Richards 0807.3453
- [3]: Liu, Minasian 1304.3137
- [4]: Liu, Minasian 1912.10974
- [5]: Green et al. hep-th/9808061
- [6]: Green et al. 1904.13394
- [7]: Green et al. hep-th/9710151
- [8]: Boels 1204.4208
- [9]: Caron-Huot et al. 1010.5487

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$\mathscr{L}_{R(\Omega_{+})^{4}} = \alpha f_{0}(\tau, \bar{\tau}) \left[t_{8} t_{8} - \frac{1}{4} \epsilon_{8} \epsilon_{8} \right] \left(R^{4} + 6 \left| \nabla G_{3} \right|^{2} R^{2} + 2 \left| G_{3} \right|^{2} R^{3} \right]$$

$$\mathscr{L}_{|G_3|^2 R^3} = \alpha f_0(\tau, \bar{\tau}) \left[-\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_{i}^{N} \frac{1}{24} e_{i} e_{i} e_{i} \right]$$

$$\mathscr{L}_{G_3^2 R^3 + \text{c.c.}} = \alpha f_1(\tau, \bar{\tau}) \left[\frac{3}{4} t_8 t_8 G_3^2 R^3 - \frac{1}{16} \epsilon_9 \epsilon_9 G_3^2 R^3 - 3 \cdot 4! \sum_i d_i G_3^{\mu\nu\lambda} G_3^{\rho\sigma\zeta} \tilde{Q}^i_{\mu\nu\lambda\rho\sigma\zeta} \right] + \text{c.c.}$$

$$\mathscr{L}_{CP-odd} = 9 \cdot 2^4 \, \alpha \, G_3 \wedge \left[f_0(\tau, \bar{\tau}) \, X_7(\Omega, \overline{G}_3) + f_1(\tau, \bar{\tau}) \, X_7(\Omega, G_3) \right] + \text{c.c.}$$

where we defined

$$\tilde{Q}^{i}_{\mu\nu\lambda\rho\sigma\zeta} = (R^{3})_{\mu\nu\lambda\rho\sigma\zeta} \quad , \quad (d_{1}, \dots, d_{8}) = 4\left(1, -\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4}, -2, \frac{1}{8}\right) \quad , \quad \alpha = \frac{(\alpha')^{3}}{3 \cdot 2^{12}}$$

 $\sum_{i} d_{i} G_{3}^{\mu\nu\lambda} \overline{G}_{3}^{\rho\sigma\zeta} \tilde{Q}^{i}_{\mu\nu\lambda\rho\sigma\zeta}$

- [1]: Peeters et al. hep-th/0112157
- [2]: Richards 0807.2421, 0807.3453
- [3]: Schlotterer et al. 1205.1516
- [4]: Schlotterer et al. 1307.3534
- [5]: Liu, Minasian 1912.10974
- [6]: Vafa et al. hep-th/9505053
- [7]: Duff et al. hep-th/9506126
- [8]: Liu, Minasian 1304.3137

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$\mathscr{L}_{R(\Omega_{+})^{4}} = \alpha f_{0}(\tau, \bar{\tau}) \left[t_{8} t_{8} - \frac{1}{4} \epsilon_{8} \epsilon_{8} \right] \left(R^{4} + 6 \left| \nabla G_{3} \right|^{2} R^{2} + 2 \left| G_{3} \right|^{2} R^{3} \right]$$

$$\mathscr{L}_{|G_3|^2 R^3} = \alpha f_0(\tau, \bar{\tau}) \left[-\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_i d_i G_3^{\mu\nu\lambda} \overline{G}_3^{\rho\sigma\zeta} \tilde{Q}_{\mu\nu\lambda\rho\sigma\zeta}^i \right]$$

$$\mathscr{L}_{G_{3}^{2}R^{3}+\text{c.c.}} = \alpha f_{1}(\tau,\bar{\tau}) \left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3} - \frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3} - 3 \cdot 4! \sum_{i} d_{i} G_{3}^{\mu\nu\lambda} G_{3}^{\rho\sigma\zeta} \tilde{Q}_{\mu\nu\lambda\rho\sigma\zeta}^{i} \right] + \text{c.c.}$$

$$\mathscr{L}_{CP-odd} = 9 \cdot 2^4 \, \alpha \, G_3 \wedge \left[f_0(\tau, \bar{\tau}) \, X_7(\Omega, \overline{G}_3) + f_1(\tau, \bar{\tau}) \, X_7(\Omega, G_3) \right] + \text{c.c.}$$

where we defined

$$\tilde{Q}^{i}_{\mu\nu\lambda\rho\sigma\zeta} = (R^{3})_{\mu\nu\lambda\rho\sigma\zeta} \quad , \quad (d_{1}, \dots, d_{8}) = 4\left(1, -\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4}, -2, \frac{1}{8}\right) \quad , \quad \alpha = \frac{(\alpha')^{3}}{3 \cdot 2^{12}}$$

Generalised geometry: couplings in $\mathscr{L}_{R(\Omega_{+})^{4}}$ obtained from Riemann tensor with torsionful connection: $\Omega_{\pm} = \Omega \pm H_3$

- [1]: Peeters et al. hep-th/0112157
- [2]: Richards 0807.2421, 0807.3453
- [3]: Schlotterer et al. 1205.1516
- [4]: Schlotterer et al. 1307.3534
- [5]: Liu, Minasian 1912.10974
- [6]: Vafa et al. hep-th/9505053
- [7]: Duff et al. hep-th/9506126
- [8]: Liu, Minasian 1304.3137

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$\mathscr{L}_{R(\Omega_{+})^{4}} = \alpha f_{0}(\tau, \bar{\tau}) \left[t_{8} t_{8} - \frac{1}{4} \epsilon_{8} \epsilon_{8} \right] \left(R^{4} + 6 \left| \nabla G_{3} \right|^{2} R^{2} + 2 \left| G_{3} \right|^{2} R^{3} \right]$$

$$\mathscr{L}_{|G_3|^2 R^3} = \alpha f_0(\tau, \bar{\tau}) \left[-\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_{i}^{N} \frac{1}{24} e_{i} e_{i} e_{i} \right]$$

$$\mathscr{L}_{G_{3}^{2}R^{3}+\text{c.c.}} = \alpha f_{1}(\tau,\bar{\tau}) \left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3} - \frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3} - 3 \cdot 4! \sum_{i} d_{i} G_{3}^{\mu\nu\lambda} G_{3}^{\rho\sigma\zeta} \tilde{Q}_{\mu\nu\lambda\rho\sigma\zeta}^{i} \right] + \text{c.c.}$$

$$\mathscr{L}_{CP-odd} = 9 \cdot 2^4 \, \alpha \, G_3 \wedge \left[f_0(\tau, \bar{\tau}) \, X_7(\Omega, \overline{G}_3) + f_1(\tau, \bar{\tau}) \, X_7(\Omega, G_3) \right] + \text{c.c.}$$

where we defined

$$\tilde{Q}^{i}_{\mu\nu\lambda\rho\sigma\zeta} = (R^{3})_{\mu\nu\lambda\rho\sigma\zeta} \quad , \quad (d_{1}, \dots, d_{8}) = 4\left(1, -\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4}, -2, \frac{1}{8}\right) \quad , \quad \alpha = \frac{(\alpha')^{3}}{3 \cdot 2^{12}}$$

$$d_i G_3^{\mu
u\lambda}\,\overline{G}_3^{
ho\sigma\zeta}\, ilde{Q}^i_{\mu
u\lambda
ho\sigma\zeta}$$

Generalised geometry: couplings in $\mathscr{L}_{R(\Omega_{+})^{4}}$ obtained from Riemann tensor with torsionful connection: $\Omega_{+} = \Omega \pm H_{3}$

The presence of CP-odd couplings has been established in both type IIA [6,7] (odd in B_2) and type IIB [8,5] (even in B_2).

- [1]: Peeters et al. hep-th/0112157
- [2]: Richards 0807.2421, 0807.3453
- [3]: Schlotterer et al. 1205.1516
- [4]: Schlotterer et al. 1307.3534
- [5]: Liu, Minasian 1912.10974
- [6]: Vafa et al. hep-th/9505053
- [7]: Duff et al. hep-th/9506126
- [8]: Liu, Minasian 1304.3137

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$\mathscr{L}_{R(\Omega_{+})^{4}} = \alpha f_{0}(\tau, \bar{\tau}) \left[t_{8} t_{8} - \frac{1}{4} \epsilon_{8} \epsilon_{8} \right] \left(R^{4} + 6 \left| \nabla G_{3} \right|^{2} R^{2} + 2 \left| G_{3} \right|^{2} R^{3} \right]$$

$$\mathscr{L}_{|G_3|^2 R^3} = \alpha f_0(\tau, \bar{\tau}) \left[-\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_{i}^{N} \frac{1}{24} e_{i} e_{i} e_{i} \right]$$

$$\mathscr{L}_{G_3^2 R^3 + \text{c.c.}} = \alpha f_1(\tau, \bar{\tau}) \left[\frac{3}{4} t_8 t_8 G_3^2 R^3 - \frac{1}{16} \epsilon_9 \epsilon_9 G_3^2 R^3 - 3 \cdot 4! \sum_i d_i G_3^{\mu\nu\lambda} G_3^{\rho\sigma\zeta} \tilde{Q}^i_{\mu\nu\lambda\rho\sigma\zeta} \right] + \text{c.c.}$$

$$\mathscr{L}_{CP-odd} = 9 \cdot 2^4 \, \alpha \, G_3 \wedge \left[f_0(\tau, \bar{\tau}) \, X_7(\Omega, \overline{G}_3) + f_1(\tau, \bar{\tau}) \, X_7(\Omega, G_3) \right] + \text{c.c.}$$

where we defined

$$\tilde{Q}^{i}_{\mu\nu\lambda\rho\sigma\zeta} = (R^{3})_{\mu\nu\lambda\rho\sigma\zeta} \quad , \quad (d_{1}, \dots, d_{8}) = 4\left(1, -\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4}, -2, \frac{1}{8}\right) \quad , \quad \alpha = \frac{(\alpha')^{3}}{3 \cdot 2^{12}}$$

Guiding Questions for the remainder of this talk

- 1. Can we simplify these formulae?
- 2. How are the relative coefficients determined?
- 3. Are results consistent with SUSY compactifications?

 Dualities

$$d_i G_3^{\mu
u\lambda} \, \overline{G}_3^{
ho\sigma\zeta} \, ilde{Q}^i_{\mu
u\lambda
ho\sigma\zeta}$$

Generalised geometry: couplings in $\mathscr{L}_{R(\Omega_{+})^{4}}$ obtained from Riemann tensor with torsionful connection: $\Omega_{+} = \Omega \pm H_{3}$

The presence of CP-odd couplings has been established in both type IIA [6,7] (odd in B_2) and type IIB [8,5] (even in B_2).

► New index structures ➡ SUSY

- [1]: Peeters et al. hep-th/0112157
- [2]: Richards 0807.2421, 0807.3453
- [3]: Schlotterer et al. 1205.1516
- [4]: Schlotterer et al. 1307.3534
- [5]: Liu, Minasian 1912.10974
- [6]: Vafa et al. hep-th/9505053
- [7]: Duff et al. hep-th/9506126
- [8]: Liu, Minasian 1304.3137

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2] Compactified P-point superparticle amplitude in 11D SUGRA on a 2-torus T^2

Degrees of freedom running in the loop are the 9D supergraviton multiplet and KK/winding modes from the T^2

² with
$$Vol(T^2) = v_0$$
 [3-5]

Vertex operators of 9D M-theory

$$V_r(h, C_3; t^{(r)})$$

Effective Vertices in 10D type IIB action

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop QCD scattering amplitudes [7]

Shown to contain information about all string loop orders [6]

References

[1]: Strassler hep-ph/9205205 [2]: Schubert hep-th/0101036 [3]: Green et al. hep-th/9706175 [4]: Green et al. hep-th/9710151 [5]: Green et al. hep-th/9907155 [6]: Russo, Tseytlin: hep-th/9707134 [7]: Bern, Kosower PRL 66, NPB 362 (1991) [8]: Gross, Witten NPB 277 (1986) [9]: Sakai, Tanii NBP 287 (1987) [10]: Sen 2104.11109, 2104.15110

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2] Compactified *P*-point superparticle amplitude in 11D SUGRA on a **2-torus** T^2

$$\mathcal{A}_{P}(h, C_{3}) = \frac{1}{v_{0}} \int \frac{\mathrm{d}t}{t} \int \mathrm{d}^{9}p \, \mathrm{e}^{-t \, \mathbf{p}^{2}} \sum_{l_{1}, l_{2}} \mathrm{e}^{-t g^{ab}} l_{a} l_{b} \operatorname{Tr}_{S} \left\langle \prod_{r=1}^{P} \int_{0}^{t} \mathrm{d}t^{(r)} \, V_{r}(h, C_{3}; t^{(r)}) \right\rangle \xrightarrow{V_{0}} V_{0} \rightarrow$$
Sum of KK/winding charges along T^{2} Integration over insertion points on the worldline

Degrees of freedom running in the loop are the 9D supergraviton multiplet and KK/winding modes from the T^2

Name: Andreas Schachner

Email: as2673@cam.ac.uk

² with
$$Vol(T^2) = v_0$$
 [3-5]

Effective Vertices in 10D type IIB action

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop QCD scattering amplitudes [7]

Shown to contain information about all string loop orders [6]

$$_{i_{14}i_{15}i_{16}} = t_{16}R^{4}$$

References

[1]: Strassler hep-ph/9205205 [2]: Schubert hep-th/0101036 [3]: Green et al. hep-th/9706175 [4]: Green et al. hep-th/9710151 [5]: Green et al. hep-th/9907155 [6]: Russo, Tseytlin: hep-th/9707134 [7]: Bern, Kosower PRL 66, NPB 362 (1991) [8]: Gross, Witten NPB 277 (1986) [9]: Sakai, Tanii NBP 287 (1987) [10]: Sen 2104.11109, 2104.15110

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2] Compactified *P*-point superparticle amplitude in 11D SUGRA on a **2-torus** T^2

$$\mathcal{A}_{P}(h, C_{3}) = \frac{1}{v_{0}} \int \frac{\mathrm{d}t}{t} \int \mathrm{d}^{9}p \, \mathrm{e}^{-t \, \mathbf{p}^{2}} \sum_{l_{1}, l_{2}} \mathrm{e}^{-t \, g^{ab} \, l_{a} l_{b}} \operatorname{Tr}_{S} \left\langle \prod_{r=1}^{P} \int_{0}^{t} \mathrm{d}t^{(r)} \, V_{r}(h, C_{3}; t^{(r)}) \right\rangle \xrightarrow{V_{0}} V_{0} \rightarrow Sum \text{ of KK/winding charges along } T^{2}$$

Degrees of freedom running in the loop are the 9D supergraviton multiplet and KK/winding modes from the T^2

Name: Andreas Schachner

Email: as2673@cam.ac.uk

² with
$$Vol(T^2) = v_0$$
 [3-5]

Effective Vertices in 10D type IIB action

$$_{i_{14}i_{15}i_{16}} = t_{16}R^4$$

Takeaway messages:

- 1. One amplitude agrees with 4-point string scattering at
 - tree level [8],
 - 1-loop **[9]**,
 - D-instanton level [10].
- 2. Kinematics from higher-dim. tensors
- 3. Modular forms from torus winding

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop QCD scattering amplitudes [7]

Shown to contain information about all string loop orders [6]

References

[1]: Strassler hep-ph/9205205 [2]: Schubert hep-th/0101036 [3]: Green et al. hep-th/9706175 [4]: Green et al. hep-th/9710151 [5]: Green et al. hep-th/9907155 [6]: Russo, Tseytlin: hep-th/9707134 [7]: Bern, Kosower PRL 66, NPB 362 (1991) [8]: Gross, Witten NPB 277 (1986) [9]: Sakai, Tanii NBP 287 (1987) [10]: Sen 2104.11109, 2104.15110

Similarly for higher-point amplitudes involving the complex 3-form G_3 where at 5-points it is easy to derive

$$v_0 \mathscr{A}_{|G_3|^2 R^3} = \left[t_{18} - 18t_{18}^{z\bar{z}} \right] |G_3|^2 R^3 \left(C v_0 - \frac{f_0(\tau, \bar{\tau})}{\sqrt{v_0}} \right) \quad , \quad v_0 \mathscr{A}_{G_3^2 R^3} = \frac{3}{2} t_{18} G_3^2 R^3 \frac{f_1(\tau, \bar{\tau})}{\sqrt{v_0}}$$

in terms of a new index structure

$$t_{18} G_3^2 R^3 = \text{Tr}(\theta \Gamma^{i_1 i_2 i_3} \theta \theta \Gamma^{i_4 i_5 i_6} \theta \theta \Gamma^{i_7 i_8} \theta \dots \theta \Gamma^{i_1 5 i_{16}} \theta) G_{i_1 i_2 i_3} G_{i_4 i_5 i_6} R_{i_7 i_8 i_9 i_1}$$

In the limit $v_0 \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_w / \sqrt{1}$

 $_{i_{10}} \ldots R_{i_{13}i_{14}i_{15}i_{16}}$

$$\sqrt{v_0}$$
.

References

[1]: Liu, Minasian 1912.10974

[2]: Green et al. hep-th/0506161

[3]: Peeters et al. hep-th/0507178

[4]: Green et al. hep-th/9710151

[5]: Green et al. hep-th/9907155

[6]: Howe, West 1983

[7]: de Haro et al. hep-th/0210080

[8]: Green et al. hep-th/0308061

Similarly for higher-point amplitudes involving the complex 3-form G_3 where at 5-points it is easy to derive

$$v_0 \mathscr{A}_{|G_3|^2 R^3} = \left[t_{18} - 18t_{18}^{z\bar{z}} \right] |G_3|^2 R^3 \left(C v_0 - \frac{f_0(\tau, \bar{\tau})}{\sqrt{v_0}} \right) \quad , \quad v_0 \mathscr{A}_{G_3^2 R^3} = \frac{3}{2} t_{18} G_3^2 R^3 \frac{f_1(\tau, \bar{\tau})}{\sqrt{v_0}}$$

in terms of a new index structure

$$t_{18} G_3^2 R^3 = \text{Tr}(\theta \Gamma^{i_1 i_2 i_3} \theta \theta \Gamma^{i_4 i_5 i_6} \theta \theta \Gamma^{i_7 i_8} \theta \dots \theta \Gamma^{i_1 5 i_{16}} \theta) G_{i_1 i_2 i_3} G_{i_4 i_5 i_6} R_{i_7 i_8 i_9 i_1}$$

In the limit $v_0 \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_w / \sqrt{1}$

 $\dots R_{i_{13}i_{14}i_{15}i_{16}}$

$$\sqrt{v_0}$$
.

Observations

• No zero winding contribution for $G_3^2 R^3$ since no

U(1)-violating terms in 11D M-theory [4,5]

• Microscopic derivation of $SL(2,\mathbb{Z})$ modular forms

 f_w from integrating out KK-modes on the torus!

References

[1]: Liu, Minasian 1912.10974

- [2]: Green et al. hep-th/0506161
- [3]: Peeters et al. hep-th/0507178
- [4]: Green et al. hep-th/9710151
- [5]: Green et al. hep-th/9907155
- [6]: Howe, West 1983
- [7]: de Haro et al. hep-th/0210080
- [8]: Green et al. hep-th/0308061

Similarly for higher-point amplitudes involving the complex 3-form G_3 where at 5-points it is easy to derive

$$v_0 \mathscr{A}_{|G_3|^2 R^3} = \left[t_{18} - 18t_{18}^{z\bar{z}} \right] |G_3|^2 R^3 \left(C v_0 - \frac{f_0(\tau, \bar{\tau})}{\sqrt{v_0}} \right) \quad , \quad v_0 \mathscr{A}_{G_3^2 R^3} = \frac{3}{2} t_{18} G_3^2 R^3 \frac{f_1(\tau, \bar{\tau})}{\sqrt{v_0}}$$

in terms of a new index structure

$$t_{18} G_3^2 R^3 = \text{Tr}(\theta \Gamma^{i_1 i_2 i_3} \theta \theta \Gamma^{i_4 i_5 i_6} \theta \theta \Gamma^{i_7 i_8} \theta \dots \theta \Gamma^{i_1 5 i_{16}} \theta) G_{i_1 i_2 i_3} G_{i_4 i_5 i_6} R_{i_7 i_8 i_9 i_1}$$

In the limit $v_0 \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_w / \sqrt{1}$

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

 $\dots R_{i_{13}i_{14}i_{15}i_{16}}$

$$\sqrt{v_0}$$
.

Observations

• No zero winding contribution for $G_3^2 R^3$ since no

U(1)-violating terms in 11D M-theory [4,5]

• Microscopic derivation of $SL(2,\mathbb{Z})$ modular forms

 f_w from integrating out KK-modes on the torus!

References

[1]: Liu, Minasian 1912.10974

- [2]: Green et al. hep-th/0506161
- [3]: Peeters et al. hep-th/0507178
- [4]: Green et al. hep-th/9710151
- [5]: Green et al. hep-th/9907155
- [6]: Howe, West 1983
- [7]: de Haro et al. hep-th/0210080
- [8]: Green et al. hep-th/0308061

Similarly for higher-point amplitudes involving the complex 3-form G_3 where at 5-points it is easy to derive

$$v_0 \mathscr{A}_{|G_3|^2 R^3} = \left[t_{18} - 18t_{18}^{z\bar{z}} \right] |G_3|^2 R^3 \left(C v_0 - \frac{f_0(\tau, \bar{\tau})}{\sqrt{v_0}} \right) \quad , \quad v_0 \mathscr{A}_{G_3^2 R^3} = \frac{3}{2} t_{18} G_3^2 R^3 \frac{f_1(\tau, \bar{\tau})}{\sqrt{v_0}}$$

in terms of a new index structure

$$t_{18} G_3^2 R^3 = \text{Tr}(\theta \Gamma^{i_1 i_2 i_3} \theta \theta \Gamma^{i_4 i_5 i_6} \theta \theta \Gamma^{i_7 i_8} \theta \dots \theta \Gamma^{i_1 5 i_{16}} \theta) G_{i_1 i_2 i_3} G_{i_4 i_5 i_6} R_{i_7 i_8 i_9 i_{10}} \dots R_{i_{13} i_{14} i_{15} i_{16}}$$

In the limit $v_0 \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_w / \sqrt{1}$

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

Comparing to previous results from string amplitudes: decomposing the index structure t_{18} using the results of [2,3] leads to

$$\mathscr{L}_{|G_3|^2 R^3} = f_0 \left\{ -\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_i d_i |G_3|^2 \tilde{Q}^i \right\} = -f_0 \left[t_{18} + \frac{1}{3} \epsilon_9 \epsilon_9 \right] |G_3|^2 R^3$$
$$\mathscr{L}_{G_3^2 R^3} = f_1 \left\{ \frac{3}{4} t_8 t_8 G_3^2 R^3 - \frac{1}{16} \epsilon_9 \epsilon_9 G_3^2 R^3 - 3 \cdot 4! \sum_i d_i G_3^2 \tilde{Q}^i \right\} = \frac{3}{2} f_1 t_{18} G_3^2 R^3$$

$$\sqrt{v_0}$$
.

Observations

• No zero winding contribution for $G_3^2 R^3$ since no

U(1)-violating terms in 11D M-theory [4,5]

• Microscopic derivation of $SL(2,\mathbb{Z})$ modular forms

 f_w from integrating out KK-modes on the torus!

- [1]: Liu, Minasian 1912.10974
- [2]: Green et al. hep-th/0506161
- [3]: Peeters et al. hep-th/0507178
- [4]: Green et al. hep-th/9710151
- [5]: Green et al. hep-th/9907155
- [6]: Howe, West 1983
- [7]: de Haro et al. hep-th/0210080
- [8]: Green et al. hep-th/0308061

Similarly for higher-point amplitudes involving the complex 3-form G_3 where at 5-points it is easy to derive

$$v_0 \mathscr{A}_{|G_3|^2 R^3} = \left[t_{18} - 18t_{18}^{z\bar{z}} \right] |G_3|^2 R^3 \left(C v_0 - \frac{f_0(\tau,\bar{\tau})}{\sqrt{v_0}} \right) \quad , \quad v_0 \mathscr{A}_{G_3^2 R^3} = \frac{3}{2} t_{18} G_3^2 R^3 \frac{f_1(\tau,\bar{\tau})}{\sqrt{v_0}}$$

in terms of a new index structure

$$t_{18} G_3^2 R^3 = \text{Tr}(\theta \Gamma^{i_1 i_2 i_3} \theta \theta \Gamma^{i_4 i_5 i_6} \theta \theta \Gamma^{i_7 i_8} \theta \dots \theta \Gamma^{i_1 5 i_{16}} \theta) G_{i_1 i_2 i_3} G_{i_4 i_5 i_6} R_{i_7 i_8 i_9 i_{10}} \dots R_{i_{13} i_{14} i_{15} i_{16}}$$

In the limit $v_0 \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_w / \sqrt{1}$

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

Comparing to previous results from string amplitudes: decomposing the index structure t_{18} using the results of [2,3] leads to

$$\mathscr{L}_{|G_3|^2 R^3} = f_0 \left\{ -\frac{1}{2} t_8 t_8 |G_3|^2 R^3 - \frac{7}{24} \epsilon_9 \epsilon_9 |G_3|^2 R^3 + 2 \cdot 4! \sum_i d_i |G_3|^2 \tilde{Q}^i \right\} = -f_0 \left[t_{18} + \frac{1}{3} \epsilon_9 \epsilon_9 \right] |G_3|^2 R^3$$
$$\mathscr{L}_{G_3^2 R^3} = f_1 \left\{ \frac{3}{4} t_8 t_8 G_3^2 R^3 - \frac{1}{16} \epsilon_9 \epsilon_9 G_3^2 R^3 - 3 \cdot 4! \sum_i d_i G_3^2 \tilde{Q}^i \right\} = \frac{3}{2} f_1 t_{18} G_3^2 R^3$$

Revised five-point effective action

$$\mathscr{L} = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right) \qquad T(t_8, \epsilon_{10}) = 2 t_8 t_8 - \frac{1}{2} \epsilon_8 \epsilon_8 - \frac{1}{3} \epsilon_9 \epsilon_9$$

- \approx ; • terms $\sim Q^i$ found in [1] disappear making t_{18} the appropriate kinematical representation!
- MUV kinematics completely specified by t_{18} as expected from linearised superfield [6]
- non-MUV kinematics receives a piece $T(t_8, \epsilon_{10})$ from non-linear SUSY [7,8]

$$\sqrt{v_0}$$
.

Observations

• No zero winding contribution for $G_3^2 R^3$ since no

U(1)-violating terms in 11D M-theory [4,5]

• Microscopic derivation of $SL(2,\mathbb{Z})$ modular forms

 f_w from integrating out KK-modes on the torus!

- [1]: Liu, Minasian 1912.10974
- [2]: Green et al. hep-th/0506161
- [3]: Peeters et al. hep-th/0507178
- [4]: Green et al. hep-th/9710151
- [5]: Green et al. hep-th/9907155
- [6]: Howe, West 1983
- [7]: de Haro et al. hep-th/0210080
- [8]: Green et al. hep-th/0308061

Superstrings, Superparticles and ... SUPERFIELDS

$$\mathscr{L}(G_3,\overline{G}_3,R) = f_0 t_{16} R^4 + f_0 \left[T(t_8,\epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

Introduce supercharges $\Theta = \theta_1 + i\theta_2$ with Weyl spinors θ_1 , θ_2 of Spin(1,9) to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$\Phi = \sum_{r=0}^{8} \Theta^{r} \Phi^{(r)} = \tau + \Theta \Lambda + \Theta^{2} G_{3} + \Theta^{3} (\partial \psi + \dots) + \Theta^{4} (R + \nabla F_{5} + F_{5}^{2} + |G_{3}|^{2}) + \dots + \Theta^{8} (\nabla^{4} \bar{\tau} + \dots)$$

where we suppressed indices and 10D Γ -matrices. For instance, one recovers as above

$$\int \mathrm{d}^{10}x \,\mathrm{d}^{16}\Theta \ e \ \Phi^4 \supset \int \mathrm{d}^{16}\Theta \left(\Theta\Gamma^{i_1i_2i_3}\Theta \ G_{i_1i_2i_3}\right)^2 \left((\Theta\Gamma^{i_1i_2k}\Theta)(\Theta\Gamma^{i_3i_4}_{k} \Theta) \ R_{i_1i_2i_3i_4}\right)^3 = t_{18}G_3^2R^3$$

Kinematically, the superfield reproduces the previous results in the MUV sector!

- [1]: Nilsson 1981
- [2]: Nilsson, Tollsten 1986
- [3]: Kallosh 1987
- [4]: Howe, West 1983
- [5]: Green et al. 1904.13394
- [6]: Caron-Huot et al. 1010.5487
- [7]: Boels 1204.4208
- [8]: Green et al. hep-th/9808061

Superstrings, Superparticles and ... SUPERFIELDS

$$\mathscr{L}(G_3,\overline{G}_3,R) = f_0 t_{16} R^4 + f_0 \left[T(t_8,\epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

Introduce supercharges $\Theta = \theta_1 + i\theta_2$ with Weyl spinors θ_1 , θ_2 of Spin(1,9) to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$\Phi = \sum_{r=0}^{8} \Theta^{r} \Phi^{(r)} = \tau + \Theta \Lambda + \Theta^{2} G_{3} + \Theta^{3} (\partial \psi + \dots) + \Theta^{4} (R + \nabla F_{5} + F_{5}^{2} + |G_{3}|^{2}) + \dots + \Theta^{8} (\nabla^{4} \bar{\tau} + \dots)$$

where we suppressed indices and 10D Γ -matrices. For instance, one recovers as above

$$\int \mathrm{d}^{10}x \,\mathrm{d}^{16}\Theta \ e \ \Phi^4 \supset \int \mathrm{d}^{16}\Theta \left(\Theta \Gamma^{i_1 i_2 i_3} \Theta \ G_{i_1 i_2 i_3}\right)^2 \left((\Theta \Gamma^{i_1 i_2 k} \Theta)(\Theta \Gamma^{i_3 i_4} _k \Theta) \ R_{i_1 i_2 i_3 i_4}\right)^3 = t_{18} G_3^2 R^3$$

Kinematically, the superfield reproduces the previous results in the MUV sector!

10D 8-derivative SUGRA actions can be constructed from a **single scalar** superfield [1-3], cf. [5] for review.

- [1]: Nilsson 1981
- [2]: Nilsson, Tollsten 1986
- [3]: Kallosh 1987
- [4]: Howe, West 1983
- [5]: Green et al. 1904.13394
- [6]: Caron-Huot et al. 1010.5487
- [7]: Boels 1204.4208
- [8]: Green et al. hep-th/9808061

Superstrings, Superparticles and ... SUPERFIELDS

$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 [T(t_8, \epsilon_{10})]$

Introduce supercharges $\Theta = \theta_1 + i\theta_2$ with Weyl spinors θ_1 , θ_2 of Spin(1,9) to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$\Phi = \sum_{r=0}^{8} \Theta^{r} \Phi^{(r)} = \tau + \Theta \Lambda + \Theta^{2} G_{3} + \Theta^{3} (\partial \psi + \dots) + \Theta^{4} (R + \nabla F_{5} + F_{5}^{2} + |G_{3}|^{2}) + \dots + \Theta^{8} (\nabla^{4} \bar{\tau} + \dots)$$

where we suppressed indices and 10D Γ -matrices. For instance, one recovers as above

$$\int \mathrm{d}^{10}x \,\mathrm{d}^{16}\Theta \ e \ \Phi^4 \supset \int \mathrm{d}^{16}\Theta \left(\Theta \Gamma^{i_1 i_2 i_3} \Theta \ G_{i_1 i_2 i_3}\right)^2 \left((\Theta \Gamma^{i_1 i_2 k} \Theta)(\Theta \Gamma^{i_3 i_4} {}_k \Theta) R_{i_1 i_2 i_3 i_4}\right)^3 = t_{18} G_3^2 R^3$$

Kinematically, the superfield reproduces the previous results in the MUV sector!

The effective action for MUV contact terms

Using linearised Type IIB superspace and superparticle methods, we derive higher order MUV contact terms as

$$\mathscr{L}^{MUV}(G_3, \overline{G}_3, R) = \sum_{w=0}^4 c_w f_w(\tau, \overline{\tau}) t_{16+2w} G_3^{2w} R^{4-w} + c.c.$$

where the coefficients c_w are determined from superparticle amplitudes and consistent with SUSY [8,5] since

These results match the 10D superstring amplitudes of [5] (using [6,7]) up to six-points!

$$(-t_{18}] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

$$c_w = \frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2} + w\right)$$

10D 8-derivative SUGRA actions can be constructed from a **single scalar** superfield [1-3], cf. [5] for review.

- [1]: Nilsson 1981
- [2]: Nilsson, Tollsten 1986
- [3]: Kallosh 1987
- [4]: Howe, West 1983
- [5]: Green et al. 1904.13394
- [6]: Caron-Huot et al. 1010.5487
- [7]: Boels 1204.4208
- [8]: Green et al. hep-th/9808061

Application 1 — K3 reductions to SUGRA in 6 dimensions

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(\frac{1}{2} R^3 + \frac{3}{2} \right) \left(\frac{1}{2} R^3 +$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$\int_{K3} G_3^2 R^3 \supset G_3^2 R \int_{K3} R^2$$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $|G_3|^2 R$, $G_3^2 R$ vanish.

 $(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3)$

$$T(t_8, \epsilon_{10}) = 2 t_8 t_8 - \frac{1}{2} \epsilon_8 \epsilon_8 - \frac{1}{3} \epsilon_9 \epsilon_9$$

Application 1 — K3 reductions to SUGRA in 6 dimensions

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(\frac{1}{2} R^3 + \frac{3}{2} \right) \left(\frac{1}{2} R^3 +$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$\int_{K3} G_3^2 R^3 \supset G_3^2 R \int_{K3} R^2$$

• There is no factorised piece coming from t_{18} :

$$t_{18} |G_3|^2 R^3 = t_{18} G_3^2 R^3 = t_{18} \overline{G}_3^2 R^3 = 0$$

 $\left(f_{1}t_{18}\overline{G_{3}^{2}R^{3}} + f_{-1}t_{18}\overline{G_{3}^{2}R^{3}}\right) \qquad T(t_{8},\epsilon_{10}) = 2t_{8}t_{8} - \frac{1}{2}\epsilon_{8}\epsilon_{8} - \frac{1}{3}\epsilon_{9}\epsilon_{9}$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $|G_3|^2 R, G_3^2 R$ vanish. In particular, we find the following cancellations

Application 1 — K3 reductions to SUGRA in 6 dimensions

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(\frac{1}{2} R^3 + \frac{3}{2} \right) \left(\frac{1}{2} R^3 +$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$\int_{K3} G_3^2 R^3 \supset G_3^2 R \int_{K3} R^2$$

• There is no factorised piece coming from t_{18} :

$$t_{18} |G_3|^2 R^3 = t_{18} G_3^2 R^3 = t_{18} \overline{G}_3^2 R^3 = 0$$

• The kinematics from generalised geometry cancels

$$\left(2t_8 t_8 - \frac{1}{2}\epsilon_8 \epsilon_8\right) |G_3|^2 R^3 = 0$$

• After integrating by parts and using the Bianchi identity (ignoring the dilaton), one arrives at

$$-\frac{1}{3}\epsilon_{9}\epsilon_{9}|G_{3}|^{2}R^{3} + 6\left(t_{8}t_{8} - \frac{1}{4}\epsilon_{8}\epsilon_{8}\right)|\nabla G_{3}|^{2}R^{2} = 0$$

 $\left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3\right) \qquad T(t_8, \epsilon_{10}) = 2 t_8 t_8 - \frac{1}{2} \epsilon_8 \epsilon_8 - \frac{1}{3} \epsilon_9 \epsilon_9$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $|G_3|^2 R, G_3^2 R$ vanish. In particular, we find the following cancellations

Application 1 – K3 reductions to SUGRA in 6 dimensions

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(\frac{1}{2} R^3 + \frac{3}{2} \right) \left(\frac{1}{2} R^3 +$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$\int_{K3} G_3^2 R^3 \supset G_3^2 R \int_{K3} R^2$$

• There is no factorised piece coming from t_{18} :

$$t_{18} |G_3|^2 R^3 = t_{18} G_3^2 R^3 = t_{18} \overline{G}_3^2 R^3 = 0$$

• The kinematics from generalised geometry cancels

$$\left(2t_8 t_8 - \frac{1}{2}\epsilon_8 \epsilon_8\right) |G_3|^2 R^3 = 0$$

• After integrating by parts and using the Bianchi identity (ignoring the dilaton), one arrives at

$$-\frac{1}{3}\epsilon_{9}\epsilon_{9}|G_{3}|^{2}R^{3} + 6\left(t_{8}t_{8} - \frac{1}{4}\epsilon_{8}\epsilon_{8}\right)|\nabla G_{3}|^{2}R^{2} = 0$$

This analysis tests the coefficients of odd-odd sector couplings like $\epsilon_9 \epsilon_9$ and $\epsilon_8 \epsilon_8$ to which the Calabi-Yau threefold analysis (at 2-derivatives) is insensitive to!

 $\left(f_{1}t_{18}G_{3}^{2}R^{3} + f_{-1}t_{18}\overline{G}_{3}^{2}R^{3}\right) \qquad T(t_{8},\epsilon_{10}) = 2t_{8}t_{8} - \frac{1}{2}\epsilon_{8}\epsilon_{8} - \frac{1}{3}\epsilon_{9}\epsilon_{9}$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $|G_3|^2 R, G_3^2 R$ vanish. In particular, we find the following cancellations

$$\mathscr{L}(G_3,\overline{G}_3,R) = f_0 t_{16} R^4 + f_0 \left[T(t_8,\epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

From reducing $f_0 t_{16} R^4$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$K = K^{(0)} - 2\log\left[\mathcal{V} + \frac{\zeta}{4}f_0(\tau,\bar{\tau})\right], \quad \zeta = -\frac{\chi(X_3)}{2(2\pi)^3}, \quad K^{(0)} = -\log[-i(\tau-\bar{\tau})] - \log\left[-i\int_{X_3}\Omega\wedge\overline{\Omega}\right]$$

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) \right]$$

From reducing $f_0 t_{16} R^4$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$K = K^{(0)} - 2\log\left[\mathcal{V} + \frac{\zeta}{4}f_0(\tau,\bar{\tau})\right], \quad \zeta = -\frac{\chi(X_3)}{2(2\pi)^3}, \quad K^{(0)} = -\log[-i(\tau-\bar{\tau})] - \log\left[-i\int_{X_3}\Omega\wedge\overline{\Omega}\right]$$

$(t_{18}) - t_{18} \left[|G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right) \right]$

Kinetic terms for B_2/C_2 -axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

From reducing $f_0 t_{16} R^4$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$K = K^{(0)} - 2\log\left[\mathcal{V} + \frac{\zeta}{4}f_0(\tau,\bar{\tau})\right], \quad \zeta = -\frac{\chi(X_3)}{2(2\pi)^3}, \quad K^{(0)} = -\log[-i(\tau-\bar{\tau})] - \log\left[-i\int_{X_3}\Omega\wedge\overline{\Omega}\right]$$

The 4D F-term scalar potential to order $(\alpha')^3$ is given by

$$V_F = e^K \left(\left. K^{A\bar{B}} D_A W \overline{D_B W} - 3 \left| \left. W \right|^2 \right) \quad , \quad W = \sqrt{\operatorname{Im}(\tau)} \int_{X_3} G_3 \wedge \Omega$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$V_{\zeta} = \frac{3\zeta e^{K^{(0)}}}{8\mathscr{V}^{3}} \left[f_{0} \left(|W|^{2} - (\tau - \bar{\tau})^{2} |D_{\tau}W|^{2} \right) + (\tau - \bar{\tau}) \left(f_{-1} \,\overline{W} D_{\tau}W - f_{1} \,W \overline{D_{\tau}W} \right) \right]$$

,
$$V_F = \frac{V_{\text{Flux}}}{\mathcal{V}^2} + (\alpha')^3 V^{(3)} + \dots$$
 ,

Kinetic terms for
$$B_2/C_2$$
-axio
We also derived 4D kinetic terms, bu
remain! At NSNS tree level, we trivia
with [Grimm et al.: 1702.0840

$$V^{(3)} = -\frac{\zeta f_0}{2\mathscr{V}^3} V_{\text{Flux}} + V_{\zeta}$$

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

From reducing $f_0 t_{16} R^4$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$K = K^{(0)} - 2\log\left[\mathcal{V} + \frac{\zeta}{4}f_0(\tau,\bar{\tau})\right], \quad \zeta = -\frac{\chi(X_3)}{2(2\pi)^3}, \quad K^{(0)} = -\log[-i(\tau-\bar{\tau})] - \log\left[-i\int_{X_3}\Omega\wedge\overline{\Omega}\right]$$

The 4D F-term scalar potential to order $(\alpha')^3$ is given by

$$V_F = e^K \left(\left. K^{A\bar{B}} D_A W \overline{D_B W} - 3 \left| \left. W \right|^2 \right) \right. , \quad W = \sqrt{\operatorname{Im}(\tau)} \int_{X_3} G_3 \wedge \Omega$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$V_{\zeta} = \frac{3\zeta e^{K^{(0)}}}{8\mathscr{V}^{3}} \left[f_{0} \left(|W|^{2} - (\tau - \bar{\tau})^{2} |D_{\tau}W|^{2} \right) + (\tau - \bar{\tau}) \left(f_{-1} \overline{W} D_{\tau}W - f_{1} W \overline{D_{\tau}W} \right) \right]$$

$$= \frac{\zeta e^{K^{(0)}}}{\mathscr{V}^{3}} \left(-\frac{1}{4} \right) \left[(-6a_{T} - 2a_{L})e^{-2\phi} \int_{X_{3}} H_{3} \wedge \Omega \int_{X_{3}} H_{3} \wedge \overline{\Omega} + (-4a_{L}) \int_{X_{3}} F_{3} \wedge \Omega \int_{X_{3}} F_{3} \wedge \overline{\Omega} + \dots \right]$$

$$f_{w}(\tau, \bar{\tau}) = a_{T} + \frac{a_{L}}{1 - 4w^{2}} + \mathscr{O}(e^{-\operatorname{Im}(\tau)}) = a_{T} + \frac{a_{L}}{1 - 4w^{2}} + \mathscr{O}(e^{-\operatorname{Im}(\tau)})$$

4D SUSY implies that F_3 flux does not contribute to $V_{\mathcal{L}}$ at tree level [Becker et al. hep-th/0204254].

Kinetic terms for B_2/C_2 -axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].

,
$$V_F = \frac{V_{\text{Flux}}}{\mathcal{V}^2} + (\alpha')^3 V^{(3)} + \dots$$
 ,

$$V^{(3)} = -\frac{\zeta f_0}{2\mathscr{V}^3} V_{\text{Flux}} + V_{\zeta}$$

$$\mathscr{L}(G_3, \overline{G}_3, R) = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

From reducing $f_0 t_{16} R^4$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$K = K^{(0)} - 2\log\left[\mathcal{V} + \frac{\zeta}{4}f_0(\tau,\bar{\tau})\right], \quad \zeta = -\frac{\chi(X_3)}{2(2\pi)^3}, \quad K^{(0)} = -\log[-i(\tau-\bar{\tau})] - \log\left[-i\int_{X_3}\Omega\wedge\overline{\Omega}\right]$$

The 4D F-term scalar potential to order $(\alpha')^3$ is given by

$$V_F = e^K \left(\left. K^{A\bar{B}} D_A W \overline{D_B W} - 3 \left| \left. W \right|^2 \right) \quad , \quad W = \sqrt{\operatorname{Im}(\tau)} \, \int_{X_3} G_3 \wedge \Omega$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$V_{\zeta} = \frac{3\zeta e^{K^{(0)}}}{8\mathcal{V}^{3}} \left[f_{0} \left(|W|^{2} - (\tau - \bar{\tau})^{2} |D_{\tau}W|^{2} \right) + (\tau - \bar{\tau}) \left(f_{-1} \overline{W} D_{\tau}W - f_{1} W \overline{D_{\tau}W} \right) \right]$$

$$= \frac{\zeta e^{K^{(0)}}}{\mathcal{V}^{3}} \left(-\frac{1}{4} \right) \left[(-6a_{T} - 2a_{L})e^{-2\phi} \int_{X_{3}} H_{3} \wedge \Omega \int_{X_{3}} H_{3} \wedge \overline{\Omega} + (-4a_{L}) \int_{X_{3}} F_{3} \wedge \Omega \int_{X_{3}} F_{3} \wedge \overline{\Omega} + \dots \right]$$

$$f_{w}(\tau, \bar{\tau}) = a_{T} + \frac{a_{L}}{1 - 4w^{2}} + \mathcal{O}(e^{-\mathrm{Im}(x)} - \mathrm{Im}(x)) + \mathrm{Im}(x) - \mathrm{$$

4D SUSY implies that F_3 flux does not contribute to V_{ζ} at tree level [Becker et al. hep-th/0204254]. We find that our results are consistent with the 4D perspective provided (equivalently for $H_3^2 R^3$ as well as $|G_3|^2 R^3$, $G_3^2 R^3$)

$$\alpha \int_{X_3} \left(t_{18} + \frac{2}{3} \,\delta_1 \right) F_3^2 R^3 = -\frac{\zeta e^{K^{(0)}}}{4 \,\mathcal{V}^3} \int_{X_3} F_3 \wedge \Omega \int_{X_3} F_3 \wedge \overline{\Omega}$$

Here, δ_1 is a potential backreaction effect entering in the MUV sector. Apart from that, only the MUV kinematics t_{18} is relevant to determine V_{c} !

Kinetic terms for B_2/C_2 -axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].

 $V^{(3)} = -\frac{\zeta f_0}{2\mathscr{V}^3} V_{\text{Flux}} + V_{\zeta}$

,
$$V_F = \frac{V_{\text{Flux}}}{\mathcal{V}^2} + (\alpha')^3 V^{(3)} + \dots$$
 ,

Superstring amplitudes:

- Can be computed systematically
- Cumbersome to extract contact interactions
- Unintuitive representations for kinematical structures

$$\mathscr{L} = f_0 t_{16} R^4 + f_0 \left[T(t_8, \epsilon_{10}) - t_{18} \right] |G_3|^2 R^3 + \frac{3}{2} \left(f_1 t_{18} G_3^2 R^3 + f_{-1} t_{18} \overline{G}_3^2 R^3 \right)$$

Superparticle amplitudes:

- Kinematics encoded in higher-dim. index structures
- Combines NSNS+RR sector
- Explains/derives modular forms
- Captures more than the linearised superfield

- 10D dilaton couplings from string amplitudes
- Non-linear extension of superspace formalism involving G_3 and τ

Combination of the three strategies provides framework to efficiently extract full 8-derivative effective action!(?)

Superfield approach:

- Kinematics encoded in superspace integrals
- Evidence for new non-linear terms
- Supersymmetry manifest

Outlook

• Further tests with lower dimensional SUSY like 4D kinetic terms for B_2/C_2 -axions

String Phenomenology 2022

