Type IIB at eight derivatives:

Insights from Superstrings, Superfields and Superparticles

Problem: Determining the α^{\prime} expansion in 10-dimensional SUGRA action Noteworthy open challenges:

1. Eight-derivative couplings in the RR-sector
2. Role of supersymmetry in string kinematics
3. Consistency with string dualities and compactifications

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

Ruben Minasian Saclay

Type IIB at eight derivatives:

Insights from Superstrings, Superfields and Superparticles

Compactification
on CY threefold X_{3}
4D effective action

$\int \chi\left(X_{3}\right) R \sqrt{g} \mathbf{d}^{4} x \underset{\text { Applications }}{ }$| - Moduli stabilisation |
| :--- |
| • Model building |
| • ... |

Problem: Determining the α^{\prime} expansion in 10-dimensional SUGRA action Noteworthy open challenges:

1. Eight-derivative couplings in the RR-sector
2. Role of supersymmetry in string kinematics
3. Consistency with string dualities and compactifications

Motivation: * Improved understanding of α^{\prime} and g_{s} corrections

* Understanding SUSY properties of higher-derivative terms in SUGRA
* Applications to string dualities and AdS/CFT
* Insights into flux compactifications and string vacua beyond leading order

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

Ruben Minasian Saclay
 Tor Vergata

Type IIB at eight derivatives:

Insights from Superstrings, Superfields and Superparticles

Problem: Determining the α^{\prime} expansion in 10-dimensional SUGRA action Noteworthy open challenges:

1. Eight-derivative couplings in the RR-sector
2. Role of supersymmetry in string kinematics
3. Consistency with string dualities and compactifications

Motivation: * Improved understanding of α^{\prime} and g_{s} corrections

* Understanding SUSY properties of higher-derivative terms in SUGRA
* Applications to string dualities and AdS/CFT
* Insights into flux compactifications and string vacua beyond leading order

Strategies:

Superstrings
Tree and 1-loop
string amplitudes up
to six-points

String kinematics from compact superspace integrals

Department of Applied Mathematics and Theoretical Physics

University of Cambridge

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

Ruben Minasian Saclay

Raffaele Savelli Tor Vergata

Insights from Superstrings, Superfields and Superparticles

String Theory

" $\alpha \alpha^{\prime} \rightarrow 0$ "
10D effective action

SUGRA action

Compactification on CY threefold X_{3}

4D effective action

\qquad Applications - Model building - Cosmology

Problem: Determining the α^{\prime} expansion in 10-dimensional SUGRA action Noteworthy open challenges:

1. Eight-derivative couplings in the RR-sector
2. Role of supersymmetry in string kinematics
3. Consistency with string dualities and compactifications

Motivation: * Improved understanding of α^{\prime} and g_{s} corrections

* Understanding SUSY properties of higher-derivative terms in SUGRA
* Applications to string dualities and AdS/CFT
* Insights into flux compactifications and string vacua beyond leading order

Strategies:

Tree and 1-loop string amplitudes up
to six-points

String kinematics from compact superspace integrals

M-theory duality and derivation of $\operatorname{SL}(2, \mathbb{Z})$ modular functions

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Outline for this talk

1. Review of eight-derivative actions
2. Five-point kinematics for 3 -forms
3. Structure of higher-point kinematics
4. Tests with lower dimensional SUSY

Based on ArXiv: 2205.11530 together with

James Liu U. of Michigan

Ruben Minasian Saclay

Raffaele Savelli Tor Vergata

Type IIB Supergravity and its α^{\prime} Expansion

The α^{\prime} expansion of Type IIB $\mathcal{N}=(2,0)$ SUGRA in 10D reads schematically (g_{s} expansion suppressed)

$$
S_{I I B}=S_{I I B}^{\text {tree }}+\left(\alpha^{\prime}\right)^{3} S_{I I B}^{(3)}+\sum_{n=4}^{\infty}\left(\alpha^{\prime}\right)^{n} S_{I I B}^{(n)}
$$

Type IIB Supergravity and its α^{\prime} Expansion

The α^{\prime} expansion of Type IIB $\mathcal{N}=(2,0)$ SUGRA in 10D reads schematically (g_{s} expansion suppressed)

$$
S_{I I B}=S_{I I B}^{t r e e}+\left(\alpha^{\prime}\right)^{3} S_{I I B}^{(3)}+\sum_{n=4}^{\infty}\left(\alpha^{\prime}\right)^{n} S_{I I B}^{(n)}
$$

No $\left(\alpha^{\prime}\right)^{1}$ or $\left(\alpha^{\prime}\right)^{2}$ to any order in g_{s} due to $\mathcal{N}=2$ SUSY in 10D

This talk: bulk corrections $S_{I I B}^{(3)}$ at order $\left(\alpha^{\prime}\right)^{3}$ corresponding to 8-derivative operators

in terms of the fields

$$
\tau=C_{0}+i e^{-\phi} \quad, \quad \mathscr{P}_{m}=\frac{i}{2 \operatorname{Im}(\tau)} \nabla_{m} \tau \quad, \quad G_{3}=\frac{1}{\operatorname{Im}(\tau)^{1 / 2}}\left(F_{3}-\tau H_{3}\right)
$$

Action is invariant under $\operatorname{SL}(2, \mathbb{Z})$ transformations

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \quad, \quad \mathscr{P} \rightarrow \frac{c \bar{\tau}+d}{c \tau+d} \mathscr{P} \quad, \quad G_{3} \rightarrow\left(\frac{c \bar{\tau}+d}{c \tau+d}\right)^{1 / 2} G_{3}
$$

and a local $U(1)$ symmetry with $\mathrm{U}(1)$ charge assignments

$$
Q_{U(1)}(\mathscr{P})=2 \quad, \quad Q_{U(1)}\left(G_{3}\right)=1 \quad, \quad Q_{U(1)}\left(g_{M N}\right)=Q_{U(1)}\left(F_{5}\right)=0
$$

Type IIB Supergravity and its α^{\prime} Expansion

The α^{\prime} expansion of Type IIB $\mathcal{N}=(2,0)$ SUGRA in 10D reads schematically (g_{s} expansion suppressed)

$$
S_{I I B}=S_{I I B}^{t r e e}+\left(\alpha^{\prime}\right)^{3} S_{I I B}^{(3)}+\sum_{n=4}^{\infty}\left(\alpha^{\prime}\right)^{n} S_{I I B}^{(n)}
$$

No $\left(\alpha^{\prime}\right)^{1}$ or $\left(\alpha^{\prime}\right)^{2}$ to any order in g_{s} due to $\mathcal{N}=2$ SUSY in 10D

This talk: bulk corrections $S_{I I B}^{(3)}$ at order $\left(\alpha^{\prime}\right)^{3}$ corresponding to 8-derivative operators

$$
S_{I I B}^{(3)} \sim \int\left\{R^{4}+R^{3}\left(G_{3}^{2}+\left|G_{3}\right|^{2}+\bar{G}_{3}^{2}+F_{5}^{2}+(\mathscr{P})^{2}+\nabla \mathscr{P}+\ldots\right)+R^{2}\left(\left|\nabla G_{3}\right|^{2}+\left(\nabla F_{5}\right)^{2}+G_{3}^{4}+\ldots\right)+R\left(G_{3}^{6}+\ldots\right)+G_{3}^{8}+\left(\nabla G_{3}\right)^{4}+\ldots\right\}
$$

in terms of the fields

$$
\tau=C_{0}+i e^{-\phi} \quad, \quad \mathscr{P}_{m}=\frac{i}{2 \operatorname{Im}(\tau)} \nabla_{m} \tau \quad, \quad G_{3}=\frac{1}{\operatorname{Im}(\tau)^{1 / 2}}\left(F_{3}-\tau H_{3}\right)
$$

Action is invariant under $\operatorname{SL}(2, \mathbb{Z})$ transformations

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \quad, \quad \mathscr{P} \rightarrow \frac{c \bar{\tau}+d}{c \tau+d} \mathscr{P} \quad, \quad G_{3} \rightarrow\left(\frac{c \bar{\tau}+d}{c \tau+d}\right)^{1 / 2} G_{3}
$$

The full quartic action

Quartic action completely determined [Policastro 0812.3138, Liu 1912.10974]

$$
\mathscr{L}^{(3)} \supset f_{0}(\tau, \bar{\tau})\left(t_{8} t_{8}+\frac{1}{8} \epsilon_{10} \epsilon_{10}\right)\left\{R^{4}+6 R^{2}\left(|\nabla \mathscr{P}|^{2}+\left|\nabla G_{3}\right|^{2}\right)+\ldots\right\}
$$

in terms of the Eisenstein series of weight 3/2 [Green hep-th/9706175]

The kinematics is (mostly) fixed by the notion of index structures t_{8} and ϵ_{10} as well as related to 12D covariance [Minasian 1506.06756]

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a non-vanishing total $U(1)$ charge $G_{3}^{2} R^{3} \quad, \quad(\nabla \mathscr{P}) \overline{\mathscr{P}}^{2} R^{2} \quad, \quad G_{3}^{2}\left|\nabla G_{3}\right|^{2} R \quad, \quad G_{3}^{4} R^{2}$

References

[1]: Richards 0807.2421
[2]: Richards 0807.3453
[3]: Liu, Minasian 1304.3137
[4]: Liu, Minasian 1912.10974
[5]: Green et al. hep-th/9808061
[6]: Green et al. 1904.13394
[7]: Green et al. hep-th/9710151
[8]: Boels 1204.4208
[9]: Caron-Huot et al. 1010.5487

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a non-vanishing total $U(1)$ charge

$$
G_{3}^{2} R^{3} \quad, \quad(\nabla \mathscr{P}) \overline{\mathscr{P}}^{2} R^{2} \quad, \quad G_{3}^{2}\left|\nabla G_{3}\right|^{2} R \quad, \quad G_{3}^{4} R^{2}
$$

Their coefficients are determined by supersymmetry [5] and given by $\operatorname{SL}(2, \mathbb{Z})$-covariant modular forms (see e.g. [6])

$$
f_{w}(\tau, \bar{\tau})=\sum_{\left(\hat{l}_{1}, \hat{l}_{2}\right) \neq(0,0)} \frac{\operatorname{Im}(\tau)^{\frac{3}{2}}}{\left(\hat{l}_{1}+\tau \hat{l}_{2}\right)^{\frac{3}{2}+w}\left(\hat{l}_{1}+\bar{\tau} \hat{l}_{2}\right)^{\frac{3}{2}-w}} \quad, \quad f_{w}\left(\frac{a \tau+b}{c \tau+d}, \frac{a \bar{\tau}+b}{c \bar{\tau}+d}\right)=\left(\frac{c \tau+d}{c \bar{\tau}+d}\right)^{w} f_{w}(\tau, \bar{\tau}) \quad, \quad Q_{U(1)}\left(f_{w}\right)=-2 w \quad, \quad \bar{f}_{w}=f_{-w}
$$

so that schematically

$$
\mathscr{L}^{(3)}=f_{12} \Lambda^{16}+\ldots+f_{4} G_{3}^{8}+\ldots+f_{1} G_{3}^{2} R^{3}+f_{0}\left(R^{4}+\left|G_{3}\right|^{2} R^{3}+\ldots\right)+f_{-1} \bar{G}_{3}^{2} R^{3}+\ldots+f_{-12}\left(\Lambda^{*}\right)^{16}
$$

The kinematics for $P \geq 5$ amplitudes in the effective action remains largely unfixed.

The terms Λ^{16} of maximal $\mathrm{U}(1)$-charge involving the dilatino Λ where explicitly derived in [7].

References

[1]: Richards 0807.2421
[2]: Richards 0807.3453
[3]: Liu, Minasian 1304.3137
[4]: Liu, Minasian 1912.10974
[5]: Green et al. hep-th/9808061
[6]: Green et al. 1904.13394
[7]: Green et al. hep-th/9710151
[8]: Boels 1204.4208
[9]: Caron-Huot et al. 1010.5487

Systematics of higher point functions

Partial 5- and 6-point results derived in [1-4] where one expects couplings to carry a non-vanishing total $U(1)$ charge

$$
G_{3}^{2} R^{3} \quad, \quad(\nabla \mathscr{P}) \overline{\mathscr{P}}^{2} R^{2} \quad, \quad G_{3}^{2}\left|\nabla G_{3}\right|^{2} R \quad, \quad G_{3}^{4} R^{2} \quad, \quad \ldots
$$

Their coefficients are determined by supersymmetry [5] and given by $\operatorname{SL}(2, \mathbb{Z})$-covariant modular forms (see e.g. [6])

$$
f_{w}(\tau, \bar{\tau})=\sum_{\left(\hat{l}_{1}, \hat{l}_{2}\right) \neq(0,0)} \frac{\operatorname{Im}(\tau)^{\frac{3}{2}}}{\left(\hat{l}_{1}+\tau \hat{l}_{2}\right)^{\frac{3}{2}+w}\left(\hat{l}_{1}+\bar{\tau} \hat{l}_{2}\right)^{\frac{3}{2}-w}} \quad, \quad f_{w}\left(\frac{a \tau+b}{c \tau+d}, \frac{a \bar{\tau}+b}{c \bar{\tau}+d}\right)=\left(\frac{c \tau+d}{c \bar{\tau}+d}\right)^{w} f_{w}(\tau, \bar{\tau}) \quad, \quad Q_{U(1)}\left(f_{w}\right)=-2 w \quad, \quad \bar{f}_{w}=f_{-w}
$$

so that schematically

$$
\mathscr{L}^{(3)}=f_{12} \Lambda^{16}+\ldots+f_{4} G_{3}^{8}+\ldots+f_{1} G_{3}^{2} R^{3}+f_{0}\left(R^{4}+\left|G_{3}\right|^{2} R^{3}+\ldots\right)+f_{-1} \bar{G}_{3}^{2} R^{3}+\ldots+f_{-12}\left(\Lambda^{*}\right)^{16}
$$

The kinematics for $P \geq 5$ amplitudes in the effective action remains largely unfixed.

The terms Λ^{16} of maximal $U(1)$-charge involving the dilatino Λ where explicitly derived in [7].

The role of $U(1)$ violation

Contact terms in $\mathscr{L}^{(3)}$ are best organised by their $U(1)$ charges.
P-point amplitudes carry a maximal $U(1)$ charge [8,6] (derived from 10D superamplitudes [9])

$$
\left|Q_{U(1)}\right| \leq 2(P-4)
$$

Amplitudes saturating this bound, are called maximally $U(1)$-violating (MUV) [8,6] and have special properties:

- free of massless poles ("what you see is what you get"),
- uniquely fixed by supersymmetry,
- kinematically determined by a linearised superfield.

References

[1]: Richards 0807.2421
[2]: Richards 0807.3453
[3]: Liu, Minasian 1304.3137
[4]: Liu, Minasian 1912.10974
[5]: Green et al. hep-th/9808061
[6]: Green et al. 1904.13394
[7]: Green et al. hep-th/9710151
[8]: Boels 1204.4208
[9]: Caron-Huot et al. 1010.5487

Five-point Kinematics for 3-forms

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$
\begin{aligned}
& \mathscr{L}_{R\left(\Omega_{+}\right)^{4}}=\alpha f_{0}(\tau, \bar{\tau})\left[t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right]\left(R^{4}+6\left|\nabla G_{3}\right|^{2} R^{2}+2\left|G_{3}\right|^{2} R^{3}\right) \\
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=\alpha f_{0}(\tau, \bar{\tau})\left[-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} \bar{G}_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right] \\
& \mathscr{L}_{G_{3}^{2} R^{3}+\text { c.c. }}=\alpha f_{1}(\tau, \bar{\tau})\left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} G_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right]+\text { c.c. } \\
& \mathscr{L}_{C P-o d d}=9 \cdot 2^{4} \alpha G_{3} \wedge\left[f_{0}(\tau, \bar{\tau}) X_{7}\left(\Omega, \bar{G}_{3}\right)+f_{1}(\tau, \bar{\tau}) X_{7}\left(\Omega, G_{3}\right)\right]+\text { c.c. }
\end{aligned}
$$

where we defined

$$
\tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}=\left(R^{3}\right)_{\mu \nu \lambda \rho \sigma \zeta} \quad, \quad\left(d_{1}, \ldots, d_{8}\right)=4\left(1,-\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4},-2, \frac{1}{8}\right) \quad, \quad \alpha=\frac{\left(\alpha^{\prime}\right)^{3}}{3 \cdot 2^{12}}
$$

References

[1]: Peeters et al. hep-th/0112157 [2]: Richards 0807.2421, 0807.3453 [3]: Schlotterer et al. 1205.1516
[4]: Schlotterer et al. 1307.3534
[5]: Liu, Minasian 1912.10974
[6]: Vafa et al. hep-th/9505053
[7]: Duff et al. hep-th/9506126
[8]: Liu, Minasian 1304.3137

Five-point Kinematics for 3-forms

The 1-loop (tree) amplitudes were computed in $[1,2]([3,4,5])$ and the effective action was constructed in [5] (see also [2])

$$
\begin{aligned}
& \mathscr{L}_{R\left(\Omega_{+}\right)^{4}}=\alpha f_{0}(\tau, \bar{\tau})\left[t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right]\left(R^{4}+6\left|\nabla G_{3}\right|^{2} R^{2}+2\left|G_{3}\right|^{2} R^{3}\right) \\
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=\alpha f_{0}(\tau, \bar{\tau})\left[-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} \bar{G}_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right] \\
& \mathscr{L}_{G_{3}^{2} R^{3}+\text { c.c. }}=\alpha f_{1}(\tau, \bar{\tau})\left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} G_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right]+\text { c.c. } \\
& \mathscr{L}_{C P-o d d}=9 \cdot 2^{4} \alpha G_{3} \wedge\left[f_{0}(\tau, \bar{\tau}) X_{7}\left(\Omega, \bar{G}_{3}\right)+f_{1}(\tau, \bar{\tau}) X_{7}\left(\Omega, G_{3}\right)\right]+\text { c.c. }
\end{aligned}
$$

where we defined

$$
\tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}=\left(R^{3}\right)_{\mu \nu \lambda \rho \sigma \zeta} \quad, \quad\left(d_{1}, \ldots, d_{8}\right)=4\left(1,-\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4},-2, \frac{1}{8}\right) \quad, \quad \alpha=\frac{\left(\alpha^{\prime}\right)^{3}}{3 \cdot 2^{12}}
$$

References

[1]: Peeters et al. hep-th/0112157 [2]: Richards 0807.2421, 0807.3453 [3]: Schlotterer et al. 1205.1516 [4]: Schlotterer et al. 1307.3534 [5]: Liu, Minasian 1912.10974
[6]: Vafa et al. hep-th/9505053
[7]: Duff et al. hep-th/9506126
[8]: Liu, Minasian 1304.3137

Five-point Kinematics for 3-forms

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$
\begin{aligned}
& \mathscr{L}_{R\left(\Omega_{+}\right)^{4}}=\alpha f_{0}(\tau, \bar{\tau})\left[t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right]\left(R^{4}+6\left|\nabla G_{3}\right|^{2} R^{2}+2\left|G_{3}\right|^{2} R^{3}\right) \\
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=\alpha f_{0}(\tau, \bar{\tau})\left[-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} \bar{G}_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right] \\
& \mathscr{L}_{G_{3}^{2} R^{3}+\text { c.c. }}=\alpha f_{1}(\tau, \bar{\tau})\left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} G_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right]+\text { c.c. } \\
& \mathscr{L}_{C P-o d d}=9 \cdot 2^{4} \alpha G_{3} \wedge\left[f_{0}(\tau, \bar{\tau}) X_{7}\left(\Omega, \bar{G}_{3}\right)+f_{1}(\tau, \bar{\tau}) X_{7}\left(\Omega, G_{3}\right)\right]+\text { c.c. }
\end{aligned}
$$

Generalised geometry: couplings in
$\mathscr{L}_{R\left(\Omega_{+}\right)^{4}}$ obtained from Riemann tensor
where we defined

The presence of CP-odd couplings has been established in both type IIA [6,7] (odd in B_{2}) and type IIB [8,5] (even in B_{2}).

$$
\tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}=\left(R^{3}\right)_{\mu \nu \lambda \rho \sigma \zeta} \quad, \quad\left(d_{1}, \ldots, d_{8}\right)=4\left(1,-\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4},-2, \frac{1}{8}\right) \quad, \quad \alpha=\frac{\left(\alpha^{\prime}\right)^{3}}{3 \cdot 2^{12}}
$$

References

[1]: Peeters et al. hep-th/0112157
[2]: Richards 0807.2421, 0807.3453
[3]: Schlotterer et al. 1205.1516
[4]: Schlotterer et al. 1307.3534
[5]: Liu, Minasian 1912.10974
[6]: Vafa et al. hep-th/9505053
[7]: Duff et al. hep-th/9506126
[8]: Liu, Minasian 1304.3137

Five-point Kinematics for 3-forms

The 1-loop (tree) amplitudes were computed in [1,2] ([3,4,5]) and the effective action was constructed in [5] (see also [2])

$$
\begin{aligned}
& \mathscr{L}_{R\left(\Omega_{+}\right)^{4}}=\alpha f_{0}(\tau, \bar{\tau})\left[t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right]\left(R^{4}+6\left|\nabla G_{3}\right|^{2} R^{2}+2\left|G_{3}\right|^{2} R^{3}\right) \\
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=\alpha f_{0}(\tau, \bar{\tau})\left[-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} \bar{G}_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right] \\
& \mathscr{L}_{G_{3}^{2} R^{3}+\text { c.c. }}=\alpha f_{1}(\tau, \bar{\tau})\left[\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{\mu \nu \lambda} G_{3}^{\rho \sigma \zeta} \tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}\right]+\text { c.c. } \\
& \mathscr{L}_{C P-o d d}=9 \cdot 2^{4} \alpha G_{3} \wedge\left[f_{0}(\tau, \bar{\tau}) X_{7}\left(\Omega, \bar{G}_{3}\right)+f_{1}(\tau, \bar{\tau}) X_{7}\left(\Omega, G_{3}\right)\right]+\text { c.c. }
\end{aligned}
$$

Generalised geometry: couplings in $\mathscr{L}_{R\left(\Omega_{+}\right)^{4}}$ obtained from Riemann tensor with torsionful connection: $\Omega_{ \pm}=\Omega \pm H_{3}$
where we defined

The presence of CP-odd couplings has been established in both type IIA [6,7] (odd in B_{2}) and type IIB [8,5] (even in B_{2}).

$$
\tilde{Q}_{\mu \nu \lambda \rho \sigma \zeta}^{i}=\left(R^{3}\right)_{\mu \nu \lambda \rho \sigma \zeta} \quad, \quad\left(d_{1}, \ldots, d_{8}\right)=4\left(1,-\frac{1}{4}, 0, \frac{1}{3}, 1, \frac{1}{4},-2, \frac{1}{8}\right) \quad, \quad \alpha=\frac{\left(\alpha^{\prime}\right)^{3}}{3 \cdot 2^{12}}
$$

Guiding Questions for the remainder of this talk

1. Can we simplify these formulae?
\Rightarrow New index structures
2. How are the relative coefficients determined?

G SUSY
3. Are results consistent with SUSY compactifications? \Rightarrow Dualities

References

[1]: Peeters et al. hep-th/0112157 [2]: Richards 0807.2421, 0807.3453 [3]: Schlotterer et al. 1205.1516 [4]: Schlotterer et al. 1307.3534 [5]: Liu, Minasian 1912.10974
[6]: Vafa et al. hep-th/9505053
[7]: Duff et al. hep-th/9506126
[8]: Liu, Minasian 1304.3137

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2]
Compactified P-point superparticle amplitude in 11D SUGRA on a 2-torus T^{2} with $\operatorname{Vol}\left(T^{2}\right)=v_{0}$ [3-5]

Sum of $\mathrm{KK} /$ winding Integration over insertion charges along T^{2} points on the worldline

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop QCD scattering amplitudes [7]

Shown to contain information about all string loop orders [6]

Degrees of freedom running in the loop are the 9D supergraviton multiplet and KK/winding modes from the T^{2}

References

[1]: Strassler hep-ph/9205205
[2]: Schubert hep-th/0101036
[3]: Green et al. hep-th/9706175
[4]: Green et al. hep-th/9710151
[5]: Green et al. hep-th/9907155
[6]: Russo, Tseytlin: hep-th/9707134
[7]: Bern, Kosower PRL 66, NPB 362 (1991)
[8]: Gross, Witten NPB 277 (1986)
[9]: Sakai, Tanii NBP 287 (1987)
[10]: Sen 2104.11109, 2104.15110

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2] Compactified P-point superparticle amplitude in 11D SUGRA on a 2-torus T^{2} with $\operatorname{Vol}\left(T^{2}\right)=v_{0}$ [3-5]

$$
\begin{aligned}
& \text { Integral over Trace over Vertex operators } \\
& \text { non-compact momenta } \\
& \text { fermion operators } \\
& \text { QCD scattering amplitudes [7] } \\
& \mathscr{A}_{P}\left(h, C_{3}\right)=\frac{1}{v_{0}} \int \frac{\mathrm{~d} t}{t} \int \mathrm{~d}^{9} p \mathrm{e}^{-t \mathbf{p}^{2}} \sum_{l_{1}, l_{2}} \mathrm{e}^{-t g^{a b} l_{a} l_{b}} \mathrm{Tr}_{S}\left\langle\prod_{r=1}^{P} \int_{0}^{t} \mathrm{~d} t^{(r)} V_{r}\left(h, C_{3} ; t^{(r)}\right)\right\rangle \xrightarrow{v_{0} \rightarrow 0} \underset{\begin{array}{c}
\text { Effective Vertices in 10D } \\
\text { type IIB action }
\end{array}}{\substack{\text { In }}} \\
& \text { Sum of KK/winding Integration over insertion } \\
& \text { charges along } T^{2} \text { points on the worldine }
\end{aligned}
$$

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop

Example: 4 graviton amplitude [3]

theory action as $v_{0} \rightarrow \infty$

References

[1]: Strassler hep-ph/9205205
[2]: Schubert hep-th/0101036
[3]: Green et al. hep-th/9706175
[4]: Green et al. hep-th/9710151
[5]: Green et al. hep-th/9907155
[6]: Russo, Tseytlin: hep-th/9707134
[7]: Bern, Kosower PRL 66, NPB 362 (1991)
[8]: Gross, Witten NPB 277 (1986)
[9]: Sakai, Tanii NBP 287 (1987)
[10]: Sen 2104.11109, 2104.15110

Intuition from Superparticle Amplitudes in 11 Dimensions

We compute supergravity amplitudes using a worldline approach parametrised by Schwinger proper time [1], review [2] Compactified P-point superparticle amplitude in 11D SUGRA on a 2-torus T^{2} with $\operatorname{Vol}\left(T^{2}\right)=v_{0}$ [3-5]

Famously: this string-inspired formalism has appeared as an efficient way to compute 1-loop QCD scattering amplitudes [7]

$$
\begin{aligned}
& \mathscr{A}_{P}\left(h, C_{3}\right)=\frac{1}{v_{0}} \int \frac{\mathrm{~d} t}{t} \int \mathrm{~d}^{9} p \mathrm{e}^{-t \mathbf{p}^{2}} \sum_{l_{1}, l_{2}} \mathrm{e}^{-t g^{a b} l_{a} l_{b}} \mathrm{Tr}_{S}\left\langle\prod_{r=1}^{P} \int_{0}^{t} \mathrm{~d} t^{(r)} V_{r}\left(h, C_{3} ; t^{(r)}\right)\right\rangle \xrightarrow{v_{0} \rightarrow 0} \underset{\begin{array}{c}
\text { Effective Vertices in 10D } \\
\text { type IIB action }
\end{array}}{\substack{\text { In }}} \\
& \text { Sum of KK/winding Integration over insertion } \\
& \text { charges along } T^{2} \text { points on the worldline } \\
& \text { Shown to contain information } \\
& \text { about all string loop orders [6] }
\end{aligned}
$$

Degrees of freedom running in the loop are the 9D supergraviton multiplet and KK/winding modes from the T^{2}

Example: 4 graviton amplitude [3]

Takeaway messages:

1. One amplitude agrees with 4 -point string scattering at

- tree level [8],
- 1-loop [9],
- D-instanton level [10].

2. Kinematics from higher-dim. tensors
3. Modular forms from torus winding

References

[1]: Strassler hep-ph/9205205
[2]: Schubert hep-th/0101036
[3]: Green et al. hep-th/9706175
[4]: Green et al. hep-th/9710151
[5]: Green et al. hep-th/9907155
[6]: Russo, Tseytlin: hep-th/9707134
[7]: Bern, Kosower PRL 66, NPB 362 (1991)
[8]: Gross, Witten NPB 277 (1986)
[9]: Sakai, Tanii NBP 287 (1987)
[10]: Sen 2104.11109, 2104.15110

5-point Contact Terms from Superparticles

Similarly for higher-point amplitudes involving the complex 3 -form G_{3} where at 5 -points it is easy to derive

$$
v_{0} \mathscr{A}_{\left|G_{3}\right|^{2} R^{3}}=\left[t_{18}-18 t_{18}^{z \bar{z}}\right]\left|G_{3}\right|^{2} R^{3}\left(C v_{0}-\frac{f_{0}(\tau, \bar{\tau})}{\sqrt{v_{0}}}\right) \quad, \quad v_{0} \mathscr{A}_{G_{3}^{2} R^{3}}=\frac{3}{2} t_{18} G_{3}^{2} R^{3} \frac{f_{1}(\tau, \bar{\tau})}{\sqrt{v_{0}}}
$$

in terms of a new index structure

$$
t_{18} G_{3}^{2} R^{3}=\operatorname{Tr}\left(\theta \Gamma^{i_{1} i_{2} i_{3}} \theta \theta \Gamma^{i_{4} i_{5} i_{6}} \theta \theta \Gamma^{i_{7} i_{8}} \theta \ldots \theta \Gamma^{i_{15} i_{1}} \theta\right) G_{i_{1} i_{2} i_{3}} G_{i_{4} i_{5} i_{6}} R_{i_{7} i_{g} i_{1} i_{10}} \ldots R_{i_{13} i_{14} i_{15} i_{16}}
$$

In the limit $v_{0} \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_{w} / \sqrt{v_{0}}$.

References

5-point Contact Terms from Superparticles

Similarly for higher-point amplitudes involving the complex 3 -form G_{3} where at 5 -points it is easy to derive

$$
v_{0} \mathscr{A}_{\left|G_{3}\right|^{2} R^{3}}=\left[t_{18}-18 t_{18}^{z \bar{z}}\right]\left|G_{3}\right|^{2} R^{3}\left(C v_{0}-\frac{f_{0}(\tau, \bar{\tau})}{\sqrt{v_{0}}}\right) \quad, \quad v_{0} \mathscr{A}_{G_{3}^{2} R^{3}}=\frac{3}{2} t_{18} G_{3}^{2} R^{3} \frac{f_{1}(\tau, \bar{\tau})}{\sqrt{v_{0}}}
$$

in terms of a new index structure

$$
t_{18} G_{3}^{2} R^{3}=\operatorname{Tr}\left(\theta \Gamma^{i_{1} i_{2} i_{3}} \theta \theta \Gamma^{i_{4} i_{5} i_{6}} \theta \theta \Gamma^{i_{7} i_{8}} \theta \ldots \theta \Gamma^{i_{15} i_{16}} \theta\right) G_{i_{1} i_{2} i_{3}} G_{i_{4} i_{5} i_{6}} R_{i_{7} i_{g} i_{1} i_{10}} \ldots R_{i_{13} i_{14} i_{15} i_{15} i_{16}}
$$

In the limit $v_{0} \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_{w} / \sqrt{v_{0}}$.

Observations

- No zero winding contribution for $G_{3}^{2} R^{3}$ since no $U(1)$-violating terms in 11D M-theory [4,5]
- Microscopic derivation of $\operatorname{SL}(2, \mathbb{Z})$ modular forms f_{w} from integrating out KK-modes on the torus!

References

[1]: Liu, Minasian 1912.10974
[2]: Green et al. hep-th/0506161
[3]: Peeters et al. hep-th/0507178
[4]: Green et al. hep-th/9710151
[5]: Green et al. hep-th/9907155
[6]: Howe, West 1983
[7]: de Haro et al. hep-th/0210080
[8]: Green et al. hep-th/0308061

5-point Contact Terms from Superparticles

Similarly for higher-point amplitudes involving the complex 3 -form G_{3} where at 5 -points it is easy to derive

$$
v_{0} \mathscr{A}_{\left|G_{3}\right|^{2} R^{3}}=\left[t_{18}-18 t_{18}^{z \bar{z}}\right]\left|G_{3}\right|^{2} R^{3}\left(C v_{0}-\frac{f_{0}(\tau, \bar{\tau})}{\sqrt{v_{0}}}\right) \quad, \quad v_{0} \mathscr{A}_{G_{3}^{2} R^{3}}=\frac{3}{2} t_{18} G_{3}^{2} R^{3} \frac{f_{1}(\tau, \bar{\tau})}{\sqrt{v_{0}}}
$$

in terms of a new index structure

$$
t_{18} G_{3}^{2} R^{3}=\operatorname{Tr}\left(\theta \Gamma^{i_{1} i_{2} i_{3}} \theta \theta \Gamma^{i_{4} i_{5} i_{6}} \theta \theta \Gamma^{i_{7} i_{8}} \theta \ldots \theta \Gamma^{i_{15} i_{1}} \theta\right) G_{i_{1} i_{2} i_{3}} G_{i_{4} i_{5} i_{6}} R_{i_{7} i_{i} i_{9} i_{10}} \ldots R_{i_{13} i_{14} i_{15} i_{16}}
$$

In the limit $v_{0} \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_{w} / \sqrt{v_{0}}$.

Observations

- No zero winding contribution for $G_{3}^{2} R^{3}$ since no $U(1)$-violating terms in 11D M-theory [4,5]
- Microscopic derivation of SL($2, \mathbb{Z}$) modular forms f_{w} from integrating out KK-modes on the torus!

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

References

[1]: Liu, Minasian 1912.10974
[2]: Green et al. hep-th/0506161
[3]: Peeters et al. hep-th/0507178
[4]: Green et al. hep-th/9710151
[5]: Green et al. hep-th/9907155
[6]: Howe, West 1983
[7]: de Haro et al. hep-th/0210080
[8]: Green et al. hep-th/0308061

5-point Contact Terms from Superparticles

Similarly for higher-point amplitudes involving the complex 3 -form G_{3} where at 5 -points it is easy to derive

$$
v_{0} \mathscr{A}_{\left|G_{3}\right|^{2} R^{3}}=\left[t_{18}-18 t_{18}^{z \bar{z}}\right]\left|G_{3}\right|^{2} R^{3}\left(C v_{0}-\frac{f_{0}(\tau, \bar{\tau})}{\sqrt{v_{0}}}\right) \quad, \quad v_{0} \mathscr{A}_{G_{3}^{2} R^{3}}=\frac{3}{2} t_{18} G_{3}^{2} R^{3} \frac{f_{1}(\tau, \bar{\tau})}{\sqrt{v_{0}}}
$$

in terms of a new index structure

$$
t_{18} G_{3}^{2} R^{3}=\operatorname{Tr}\left(\theta \Gamma^{i_{1} i_{2} i_{3}} \theta \theta \Gamma^{i_{4} i_{5} i_{6}} \theta \theta \Gamma^{i_{7} i_{8}} \theta \ldots \theta \Gamma^{i_{15} i_{1}} \theta\right) G_{i_{1} i_{2} i_{3}} G_{i_{4} i_{5} i_{6}} R_{i_{7} i_{i} i_{9} i_{10}} \ldots R_{i_{13} i_{14} i_{15} i_{16}}
$$

In the limit $v_{0} \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_{w} / \sqrt{v_{0}}$.

Observations

- No zero winding contribution for $G_{3}^{2} R^{3}$ since no U(1)-violating terms in 11D M-theory [4,5]
- Microscopic derivation of $\operatorname{SL}(2, \mathbb{Z})$ modular forms f_{w} from integrating out KK-modes on the torus!

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

Comparing to previous results from string amplitudes: decomposing the index structure t_{18} using the results of $[2,3]$ leads to

$$
\begin{aligned}
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=f_{0}\left\{-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i}\left|G_{3}\right|^{2} \tilde{Q}^{i}\right\}=-f_{0}\left[t_{18}+\frac{1}{3} \epsilon_{9} \epsilon_{9}\right]\left|G_{3}\right|^{2} R^{3} \\
& \mathscr{L}_{G_{3}^{2} R^{3}}=f_{1}\left\{\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{2} \tilde{Q}^{i}\right\}=\frac{3}{2} f_{1} t_{18} G_{3}^{2} R^{3}
\end{aligned}
$$

References

5-point Contact Terms from Superparticles

Similarly for higher-point amplitudes involving the complex 3 -form G_{3} where at 5 -points it is easy to derive

$$
v_{0} \mathscr{A}_{\left|G_{3}\right|^{2} R^{3}}=\left[t_{18}-18 t_{18}^{z \bar{z}}\right]\left|G_{3}\right|^{2} R^{3}\left(C v_{0}-\frac{f_{0}(\tau, \bar{\tau})}{\sqrt{v_{0}}}\right) \quad, \quad v_{0} \mathscr{A}_{G_{3}^{2} R^{3}}=\frac{3}{2} t_{18} G_{3}^{2} R^{3} \frac{f_{1}(\tau, \bar{\tau})}{\sqrt{v_{0}}}
$$

in terms of a new index structure

$$
t_{18} G_{3}^{2} R^{3}=\operatorname{Tr}\left(\theta \Gamma^{i_{i} i_{2} i_{3}} \theta \theta \Gamma^{i_{4} i_{5} i_{6}} \theta \theta \Gamma^{i_{7} i_{8}} \theta \ldots \theta \Gamma^{i_{15} i_{1} i_{6}} \theta\right) G_{i_{1} i_{2} i_{3}} G_{i_{4} i_{5} i_{6}} R_{i_{7} i_{i} i_{1} i_{10}} \ldots R_{i_{13} i_{14} i_{15} i_{16}}
$$

In the limit $v_{0} \rightarrow 0$, type IIB contact terms from winding contributions $\sim f_{w} / \sqrt{v_{0}}$.

Observations

- No zero winding contribution for $G_{3}^{2} R^{3}$ since no U(1)-violating terms in 11D M-theory [4,5]
- Microscopic derivation of $\operatorname{SL}(2, \mathbb{Z})$ modular forms f_{w} from integrating out KK-modes on the torus!

Question: DOES THIS AGREE WITH SUPERSTRING SCATTERING?

Comparing to previous results from string amplitudes: decomposing the index structure t_{18} using the results of $[2,3]$ leads to

$$
\begin{aligned}
& \mathscr{L}_{\left|G_{3}\right|^{2} R^{3}}=f_{0}\left\{-\frac{1}{2} t_{8} t_{8}\left|G_{3}\right|^{2} R^{3}-\frac{7}{24} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+2 \cdot 4!\sum_{i} d_{i}\left|G_{3}\right|^{2} \tilde{Q}^{i}\right\}=-f_{0}\left[t_{18}+\frac{1}{3} \epsilon_{9} \epsilon_{9}\right]\left|G_{3}\right|^{2} R^{3} \\
& \mathscr{L}_{G_{3}^{2} R^{3}}=f_{1}\left\{\frac{3}{4} t_{8} t_{8} G_{3}^{2} R^{3}-\frac{1}{16} \epsilon_{9} \epsilon_{9} G_{3}^{2} R^{3}-3 \cdot 4!\sum_{i} d_{i} G_{3}^{2} \tilde{Q}^{i}\right\}=\frac{3}{2} f_{1} t_{18} G_{3}^{2} R^{3}
\end{aligned}
$$

Revised five-point effective action

$\mathscr{L}=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right) \quad T\left(t_{8}, \epsilon_{10}\right)=2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}-\frac{1}{3} \epsilon_{9} \epsilon_{9}$
[1]: Liu, Minasian 1912.10974
[2]: Green et al. hep-th/0506161 [3]: Peeters et al. hep-th/0507178 [4]: Green et al. hep-th/9710151 [5]: Green et al. hep-th/9907155 [6]: Howe, West 1983
[7]: de Haro et al. hep-th/0210080 [8]: Green et al. hep-th/0308061

- terms $\sim \tilde{Q}^{i}$ found in [1] disappear making t_{18} the appropriate kinematical representation!
- non-MUV kinematics receives a piece $T\left(t_{8}, \epsilon_{10}\right)$ from non-linear SUSY $[7,8]$

References

 -

Superstrings, Superparticles and ... SUPERFIELDS

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

Introduce supercharges $\Theta=\theta_{1}+i \theta_{2}$ with Weyl spinors θ_{1}, θ_{2} of $\operatorname{Spin}(1,9)$ to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$
\Phi=\sum_{r=0}^{8} \Theta^{r} \Phi^{(r)}=\tau+\Theta \Lambda+\Theta^{2} G_{3}+\Theta^{3}(\partial \psi+\ldots)+\Theta^{4}\left(R+\nabla F_{5}+F_{5}^{2}+\left|G_{3}\right|^{2}\right)+\ldots+\Theta^{8}\left(\nabla^{4} \bar{\tau}+\ldots\right)
$$

where we suppressed indices and 10D Γ-matrices. For instance, one recovers as above

$$
\int \mathrm{d}^{10} x \mathrm{~d}^{16} \Theta e \Phi^{4} \supset \int \mathrm{~d}^{16} \Theta\left(\Theta \Gamma^{i_{1} i_{2} i_{3}} \Theta G_{i_{1} i_{2} i_{3}}\right)^{2}\left(\left(\Theta \Gamma^{i_{1} i_{2} k} \Theta\right)\left(\Theta \Gamma^{i_{3} i_{4}}{ }_{k} \Theta\right) R_{i_{1} i_{2} i_{3} i_{4}}\right)^{3}=t_{18} G_{3}^{2} R^{3}
$$

Kinematically, the superfield reproduces the previous results in the MUV sector!

References

[1]: Nilsson 1981
[2]: Nilsson, Tollsten 1986
[3]: Kallosh 1987
[4]: Howe, West 1983
[5]: Green et al. 1904.13394
[6]: Caron-Huot et al. 1010.5487
[7]: Boels 1204.4208
[8]: Green et al. hep-th/9808061

Superstrings, Superparticles and ... SUPERFIELDS

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

Introduce supercharges $\Theta=\theta_{1}+i \theta_{2}$ with Weyl spinors θ_{1}, θ_{2} of $\operatorname{Spin}(1,9)$ to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$
\Phi=\sum_{r=0}^{8} \Theta^{r} \Phi^{(r)}=\tau+\Theta \Lambda+\Theta^{2} G_{3}+\Theta^{3}(\partial \psi+\ldots)+\Theta^{4}\left(R+\nabla F_{5}+F_{5}^{2}+\left|G_{3}\right|^{2}\right)+\ldots+\Theta^{8}\left(\nabla^{4} \bar{\tau}+\ldots\right)
$$

where we suppressed indices and 10D Γ-matrices. For instance, one recovers as above

$$
\int \mathrm{d}^{10} x \mathrm{~d}^{16} \Theta e \Phi^{4} \supset \int \mathrm{~d}^{16} \Theta\left(\Theta \Gamma^{\Gamma_{1} i_{2} i_{3}} \Theta G_{i_{1} i_{2} i_{3}}\right)^{2}\left(\left(\Theta \Gamma^{i_{1} i_{2} k} \Theta\right)\left(\Theta \Gamma^{i_{j} i_{4}} \Theta\right) R_{i_{1} i_{2} i_{4}{ }_{4}}\right)^{3}=t_{18} G_{3}^{2} R^{3}
$$

10D 8-derivative SUGRA actions can be constructed from a single scalar superfield [1-3], cf. [5] for review.
Kinematically, the superfield reproduces the previous results in the MUV sector!

References

[1]: Nilsson 1981
[2]: Nilsson, Tollsten 1986
[3]: Kallosh 1987
[4]: Howe, West 1983
[5]: Green et al. 1904.13394
[6]: Caron-Huot et al. 1010.5487
[7]: Boels 1204.4208
[8]: Green et al. hep-th/9808061

Superstrings, Superparticles and ... SUPERFIELDS

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

Introduce supercharges $\Theta=\theta_{1}+i \theta_{2}$ with Weyl spinors θ_{1}, θ_{2} of $\operatorname{Spin}(1,9)$ to define a scalar superfield $\Phi(x, \Theta)$ with components [4]

$$
\Phi=\sum_{r=0}^{8} \Theta^{r} \Phi^{(r)}=\tau+\Theta \Lambda+\Theta^{2} G_{3}+\Theta^{3}(\partial \psi+\ldots)+\Theta^{4}\left(R+\nabla F_{5}+F_{5}^{2}+\left|G_{3}\right|^{2}\right)+\ldots+\Theta^{8}\left(\nabla^{4} \bar{\tau}+\ldots\right)
$$

where we suppressed indices and 10D Γ-matrices. For instance, one recovers as above

$$
\int \mathrm{d}^{10} x \mathrm{~d}^{16} \Theta e \Phi^{4} \supset \int \mathrm{~d}^{16} \Theta\left(\Theta \Gamma^{i_{1} i_{2} i_{3}} \Theta G_{i_{1} i_{2} i_{3}}\right)^{2}\left(\left(\Theta \Gamma^{i_{1} i_{2} k} \Theta\right)\left(\Theta \Gamma^{i_{3} i_{4}}{ }_{k} \Theta\right) R_{i_{1} i_{2} i_{3} i_{4}}\right)^{3}=t_{18} G_{3}^{2} R^{3}
$$

10D 8-derivative SUGRA actions can be constructed from a single scalar superfield [1-3], cf. [5] for review.

Kinematically, the superfield reproduces the previous results in the MUV sector!

The effective action for MUV contact terms

Using linearised Type IIB superspace and superparticle methods, we derive higher order MUV contact terms as

$$
\mathscr{L}^{M U V}\left(G_{3}, \bar{G}_{3}, R\right)=\sum_{w=0}^{4} c_{w} f_{w}(\tau, \bar{\tau}) t_{16+2 w} G_{3}^{2 w} R^{4-w}+\mathrm{c} . \mathrm{c} . \quad c_{w}=\frac{2}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}+w\right)
$$

where the coefficients c_{w} are determined from superparticle amplitudes and consistent with SUSY [8,5] since

$$
c_{w} f_{w}=2^{w} \mathscr{D}_{w-1} \ldots \mathscr{D}_{0} f_{0} \quad \quad \mathscr{D}_{w} f_{w}=i\left(\tau_{2} \frac{\partial}{\partial \tau}-i \frac{w}{2}\right) f_{w}=\frac{3+2 w}{4} f_{w+1}
$$

References

[1]: Nilsson 1981
[2]: Nilsson, Tollsten 1986
[3]: Kallosh 1987
[4]: Howe, West 1983
[5]: Green et al. 1904.13394
[6]: Caron-Huot et al. 1010.5487
[7]: Boels 1204.4208
[8]: Green et al. hep-th/9808061
These results match the 10D superstring amplitudes of [5] (using [6,7]) up to six-points!

Application 1 - K3 reductions to SUGRA in 6 dimensions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right) \quad T\left(t_{8}, \epsilon_{10}\right)=2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}-\frac{1}{3} \epsilon_{9} \epsilon_{9}
$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$
\int_{K 3} G_{3}^{2} R^{3} \supset G_{3}^{2} R \int_{K 3} R^{2}
$$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $\left|G_{3}\right|^{2} R, G_{3}^{2} R$ vanish.

Application 1 - K3 reductions to SUGRA in 6 dimensions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right) \quad T\left(t_{8}, \epsilon_{10}\right)=2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}-\frac{1}{3} \epsilon_{9} \epsilon_{9}
$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$
\int_{K 3} G_{3}^{2} R^{3} \supset G_{3}^{2} R \int_{K 3} R^{2}
$$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $\left|G_{3}\right|^{2} R, G_{3}^{2} R$ vanish. In particular, we find the following cancellations

- There is no factorised piece coming from t_{18} :

$$
t_{18}\left|G_{3}\right|^{2} R^{3}=t_{18} G_{3}^{2} R^{3}=t_{18} \bar{G}_{3}^{2} R^{3}=0
$$

Application 1 - K3 reductions to SUGRA in 6 dimensions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right) \quad T\left(t_{8}, \epsilon_{10}\right)=2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}-\frac{1}{3} \epsilon_{9} \epsilon_{9}
$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$
\int_{K 3} G_{3}^{2} R^{3} \supset G_{3}^{2} R \int_{K 3} R^{2}
$$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $\left|G_{3}\right|^{2} R, G_{3}^{2} R$ vanish. In particular, we find the following cancellations

- There is no factorised piece coming from t_{18} :

$$
t_{18}\left|G_{3}\right|^{2} R^{3}=t_{18} G_{3}^{2} R^{3}=t_{18} \bar{G}_{3}^{2} R^{3}=0
$$

- The kinematics from generalised geometry cancels

$$
\left(2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}\right)\left|G_{3}\right|^{2} R^{3}=0
$$

- After integrating by parts and using the Bianchi identity (ignoring the dilaton), one arrives at

$$
-\frac{1}{3} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+6\left(t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right)\left|\nabla G_{3}\right|^{2} R^{2}=0
$$

Application 1 - K3 reductions to SUGRA in 6 dimensions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right) \quad T\left(t_{8}, \epsilon_{10}\right)=2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}-\frac{1}{3} \epsilon_{9} \epsilon_{9}
$$

We extend results of [Liu, Minasian 1304.3137, 1912.10974] to RR-sector by focussing on factorised pieces:

$$
\int_{K 3} G_{3}^{2} R^{3} \supset G_{3}^{2} R \int_{K 3} R^{2}
$$

As required by SUSY [Lin et al. 1508.07305], we verify that the 3-point functions $\left|G_{3}\right|^{2} R, G_{3}^{2} R$ vanish. In particular, we find the following cancellations

- There is no factorised piece coming from t_{18} :

$$
t_{18}\left|G_{3}\right|^{2} R^{3}=t_{18} G_{3}^{2} R^{3}=t_{18} \bar{G}_{3}^{2} R^{3}=0
$$

- The kinematics from generalised geometry cancels

$$
\left(2 t_{8} t_{8}-\frac{1}{2} \epsilon_{8} \epsilon_{8}\right)\left|G_{3}\right|^{2} R^{3}=0
$$

- After integrating by parts and using the Bianchi identity (ignoring the dilaton), one arrives at

$$
-\frac{1}{3} \epsilon_{9} \epsilon_{9}\left|G_{3}\right|^{2} R^{3}+6\left(t_{8} t_{8}-\frac{1}{4} \epsilon_{8} \epsilon_{8}\right)\left|\nabla G_{3}\right|^{2} R^{2}=0
$$

This analysis tests the coefficients of odd-odd sector couplings like $\epsilon_{9} \epsilon_{9}$ and $\epsilon_{8} \epsilon_{8}$ to which the Calabi-Yau threefold analysis (at 2-derivatives) is insensitive to!

Application 2 - Calabi-Yau (CY) threefold reductions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

From reducing $f_{0} t_{16} R^{4}$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$
K=K^{(0)}-2 \log \left[\mathscr{V}+\frac{\zeta}{4} f_{0}(\tau, \bar{\tau})\right], \quad \zeta=-\frac{\chi\left(X_{3}\right)}{2(2 \pi)^{3}}, \quad K^{(0)}=-\log [-i(\tau-\bar{\tau})]-\log \left[-i \int_{X_{3}} \Omega \wedge \bar{\Omega}\right]
$$

Application 2 - Calabi-Yau (CY) threefold reductions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

From reducing $f_{0} t_{16} R^{4}$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]
$K=K^{(0)}-2 \log \left[\mathscr{V}+\frac{\zeta}{4} f_{0}(\tau, \bar{\tau})\right], \quad \zeta=-\frac{\chi\left(X_{3}\right)}{2(2 \pi)^{3}}, \quad K^{(0)}=-\log [-i(\tau-\bar{\tau})]-\log \left[-i \int_{X_{3}} \Omega \wedge \bar{\Omega}\right]$

Kinetic terms for B_{2} / C_{2}-axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].

Application 2 - Calabi-Yau (CY) threefold reductions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

From reducing $f_{0} t_{16} R^{4}$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$
K=K^{(0)}-2 \log \left[\mathscr{V}+\frac{\zeta}{4} f_{0}(\tau, \bar{\tau})\right], \quad \zeta=-\frac{\chi\left(X_{3}\right)}{2(2 \pi)^{3}}, \quad K^{(0)}=-\log [-i(\tau-\bar{\tau})]-\log \left[-i \int_{X_{3}} \Omega \wedge \bar{\Omega}\right]
$$

Kinetic terms for B_{2} / C_{2}-axions
We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].
The 4D F-term scalar potential to order $\left(\alpha^{\prime}\right)^{3}$ is given by

$$
V_{F}=e^{K}\left(K^{A \bar{B}} D_{A} W \overline{D_{B} W}-3|W|^{2}\right) \quad, \quad W=\sqrt{\operatorname{lm}(\tau)} \int_{X_{3}} G_{3} \wedge \Omega \quad, \quad V_{F}=\frac{V_{\mathrm{Flux}}}{\mathscr{V}^{2}}+\left(\alpha^{\prime}\right)^{3} V^{(3)}+\ldots \quad, \quad V^{(3)}=-\frac{\zeta f_{0}}{2 \mathscr{V}^{3}} V_{\mathrm{Flux}}+V_{\zeta}
$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$
V_{\zeta}=\frac{3 \zeta e^{K^{(0)}}}{8 \mathscr{V}^{3}}\left[f_{0}\left(|W|^{2}-(\tau-\bar{\tau})^{2}\left|D_{\tau} W\right|^{2}\right)+(\tau-\bar{\tau})\left(f_{-1} \bar{W} D_{\tau} W-f_{1} W \overline{D_{\tau} W}\right)\right]
$$

Application 2 - Calabi-Yau (CY) threefold reductions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

From reducing $f_{0} t_{16} R^{4}$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$
K=K^{(0)}-2 \log \left[\mathscr{V}+\frac{\zeta}{4} f_{0}(\tau, \bar{\tau})\right], \quad \zeta=-\frac{\chi\left(X_{3}\right)}{2(2 \pi)^{3}}, \quad K^{(0)}=-\log [-i(\tau-\bar{\tau})]-\log \left[-i \int_{X_{3}} \Omega \wedge \bar{\Omega}\right]
$$

Kinetic terms for B_{2} / C_{2}-axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].
The 4D F-term scalar potential to order $\left(\alpha^{\prime}\right)^{3}$ is given by

$$
V_{F}=e^{K}\left(K^{A \bar{B}} D_{A} W \overline{D_{B} W}-3|W|^{2}\right) \quad, \quad W=\sqrt{\operatorname{lm}(\tau)} \int_{X_{3}} G_{3} \wedge \Omega \quad, \quad V_{F}=\frac{V_{\text {Flux }}}{\mathscr{V}^{2}}+\left(\alpha^{\prime}\right)^{3} V^{(3)}+\ldots \quad, \quad V^{(3)}=-\frac{\zeta f_{0}}{2 V^{3}} V_{\text {Flux }}+V_{\zeta}
$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$
\begin{aligned}
V_{\zeta} & =\frac{3 \zeta e^{K^{(0)}}}{8 \mathscr{V}^{3}}\left[f_{0}\left(|W|^{2}-(\tau-\bar{\tau})^{2}\left|D_{\tau} W\right|^{2}\right)+(\tau-\bar{\tau})\left(f_{-1} \bar{W} D_{\tau} W-f_{1} W \overline{D_{\tau} W}\right)\right] \\
& =\frac{\zeta e^{K^{(0)}}}{\mathscr{V}^{3}}\left(-\frac{1}{4}\right)\left[\left(-6 a_{T}-2 a_{L}\right) e^{-2 \phi} \int_{X_{3}} H_{3} \wedge \Omega \int_{X_{3}} H_{3} \wedge \bar{\Omega}+\left(-4 a_{L}\right) \int_{X_{3}} F_{3} \wedge \Omega \int_{X_{3}} F_{3} \wedge \bar{\Omega}+\ldots\right]
\end{aligned}
$$

$$
f_{w}(\tau, \bar{\tau})=a_{T}+\frac{a_{L}}{1-4 w^{2}}+\mathcal{O}\left(e^{-\operatorname{Im}(\tau)}\right)
$$

$$
a_{T}=\underbrace{2 \zeta(3) \operatorname{Im}(\tau)^{3 / 2}}_{\text {Tree }} \quad a_{L}=\underbrace{\frac{2 \pi^{2}}{3} \operatorname{Im}(\tau)^{-1 / 2}}_{1-\mathrm{loop}}
$$

4D SUSY implies that F_{3} flux does not contribute to V_{ζ} at tree level [Becker et al. hep-th/0204254].

Application 2 - Calabi-Yau (CY) threefold reductions

$$
\mathscr{L}\left(G_{3}, \bar{G}_{3}, R\right)=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

From reducing $f_{0} t_{16} R^{4}$, we can identify the correction to the Kähler potential [Antoniadis et al. hep-th/9707013]

$$
K=K^{(0)}-2 \log \left[\mathscr{V}+\frac{\zeta}{4} f_{0}(\tau, \bar{\tau})\right], \quad \zeta=-\frac{\chi\left(X_{3}\right)}{2(2 \pi)^{3}}, \quad K^{(0)}=-\log [-i(\tau-\bar{\tau})]-\log \left[-i \int_{X_{3}} \Omega \wedge \bar{\Omega}\right]
$$

The 4D F-term scalar potential to order $\left(\alpha^{\prime}\right)^{3}$ is given by

$$
V_{F}=e^{K}\left(K^{A \bar{B}} D_{A} W \overline{D_{B} W}-3|W|^{2}\right) \quad, \quad W=\sqrt{\operatorname{lm}(\tau)} \int_{X_{3}} G_{3} \wedge \Omega \quad, \quad V_{F}=\frac{V_{\mathrm{Flux}}}{\mathscr{V}^{2}}+\left(\alpha^{\prime}\right)^{3} V^{(3)}+\ldots
$$

$$
V^{(3)}=-\frac{\zeta f_{0}}{2 V^{3}} V_{\text {Flux }}+V_{\zeta}
$$

where the piece originating from the reduction off 10D 8-derivative terms reads

$$
\begin{aligned}
V_{\zeta} & =\frac{3 \zeta e^{K^{(0)}}}{8 \mathscr{V}^{3}}\left[f_{0}\left(|W|^{2}-(\tau-\bar{\tau})^{2}\left|D_{\tau} W\right|^{2}\right)+(\tau-\bar{\tau})\left(f_{-1} \bar{W} D_{\tau} W-f_{1} W \overline{D_{\tau} W}\right)\right] \\
& =\frac{\zeta e^{K^{(0)}}}{\mathscr{V}^{3}}\left(-\frac{1}{4}\right)\left[\left(-6 a_{T}-2 a_{L}\right) e^{-2 \phi} \int_{X_{3}} H_{3} \wedge \Omega \int_{X_{3}} H_{3} \wedge \bar{\Omega}+\left(-4 a_{L}\right) \int_{X_{3}} F_{3} \wedge \Omega \int_{X_{3}} F_{3} \wedge \bar{\Omega}+\ldots\right]
\end{aligned}
$$

Kinetic terms for B_{2} / C_{2}-axions We also derived 4D kinetic terms, but issues remain! At NSNS tree level, we trivially agree with [Grimm et al.: 1702.08404].

$$
f_{w}(\tau, \bar{\tau})=a_{T}+\frac{a_{L}}{1-4 w^{2}}+\mathcal{O}\left(e^{-\operatorname{Im}(\tau)}\right)
$$

$$
a_{T}=\underbrace{2 \zeta(3) \operatorname{Im}(\tau)^{3 / 2}}_{\text {Tree }} \quad a_{L}=\underbrace{\frac{2 \pi^{2}}{3} \operatorname{Im}(\tau)^{-1 / 2}}_{1-\mathrm{loop}}
$$

4D SUSY implies that F_{3} flux does not contribute to V_{ζ} at tree level [Becker et al. hep-th/0204254].
We find that our results are consistent with the 4D perspective provided (equivalently for $H_{3}^{2} R^{3}$ as well as $\left|G_{3}\right|^{2} R^{3}, G_{3}^{2} R^{3}$)
$\alpha \int_{X_{3}}\left(t_{18}+\frac{2}{3} \delta_{1}\right) F_{3}^{2} R^{3}=-\frac{\zeta e^{K^{(0)}}}{4 V^{3}} \int_{X_{3}} F_{3} \wedge \Omega \int_{X_{3}} F_{3} \wedge \bar{\Omega}$

Here, δ_{1} is a potential backreaction effect entering in the MUV sector. Apart from that, only the MUV kinematics t_{18} is relevant to determine V_{ζ} !

Superstring amplitudes:

- Can be computed systematically
- Cumbersome to extract contact interactions
- Unintuitive representations for kinematical structures

Combination of the three strategies provides framework to efficiently

 extract full 8-derivative effective action!(?)$$
\mathscr{L}=f_{0} t_{16} R^{4}+f_{0}\left[T\left(t_{8}, \epsilon_{10}\right)-t_{18}\right]\left|G_{3}\right|^{2} R^{3}+\frac{3}{2}\left(f_{1} t_{18} G_{3}^{2} R^{3}+f_{-1} t_{18} \bar{G}_{3}^{2} R^{3}\right)
$$

Superparticle amplitudes:

- Kinematics encoded in higher-dim. index structures
- Combines NSNS+RR sector
- Explains/derives modular forms
- Captures more than the linearised superfield

Superfield approach:

- Kinematics encoded in superspace integrals
- Evidence for new non-linear terms
- Supersymmetry manifest

Outlook

- 10D dilaton couplings from string amplitudes
- Further tests with lower dimensional SUSY like 4D kinetic terms for B_{2} / C_{2}-axions
- Non-linear extension of superspace formalism involving G_{3} and τ

String Phenomenology 2022

